CLC number:
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2024-07-24
Cited: 0
Clicked: 2673
Citations: Bibtex RefMan EndNote GB/T7714
https://orcid.org/0000-0001-5363-2851
Yan LI, Lei YAN, Xuhui HE. Large eddy simulation study of 3D wind field in a complex mountainous area under different boundary conditions[J]. Journal of Zhejiang University Science A,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.A2300613 @article{title="Large eddy simulation study of 3D wind field in a complex mountainous area under different boundary conditions", %0 Journal Article TY - JOUR
不同边界条件下复杂山区三维风场的大涡模拟研究机构:1中南大学,土木工程学院,中国长沙,410075;2高速铁路建造技术国家工程研究中心,中国长沙,410075;3轨道交通工程结构防灾减灾湖南省重点实验室,中国长沙,410075 目的:探究利用大涡模拟研究山区桥址三维风场特征的适用性。研究计算域尺寸对模拟山区桥址风场特征的影响,并分析得出满足工程应用要求的最小计算域尺寸。研究大涡模拟中添加入口湍流的方法,并对比分析不同湍流入口条件对风场特征的影响。 创新点:1.设置了多种高度和长度的计算域进行计算和对比;2.研究了三种入口边界条件对风场特征的影响。 方法:1.使用大涡模拟计算与风洞试验设置完全一致的工况,验证大涡模拟的准确性;2.改变上述工况的计算域尺寸,并与之前的结果进行对比分析;3.分别使用谐波合成法和循环法生成入口边界的脉动风速序列,并将它们引入主计算域进行计算,对比分析两种湍流来流工况与均匀来流工况所得的桥址处风场特征。 结论:1.在山区风场的数值模拟中,计算域高度低于三倍模型高度时,顶部边界对风场影响很大;当计算域高度高于五倍模型高度时,顶部边界对风场影响微弱。2.计算域出口边界与桥址之间存在高山阻隔,故两者间距离对计算结果影响不大。3.入口边界的湍流特征对桥址处风剖面形状影响不大,但对桥址处湍流特征有明显影响;循环法产生的湍流入口边界能显著降低低空中的湍流强度。4.当地形坡度平缓时,入口湍流特征对后方风场影响较大,而当地形坡度陡峭时,入口湍流对后方风场影响较小。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]AIJ (Architectural Institute of Japan), 2004. Recommendations for Loads on Buildings/Commentary, AIJ-2004. AIJ, Tokyo, Japan. ![]() [2]AS/NZS (Australian/New Zealand Standard), 2021. Structural Design Actions. Part 2: Wind Actions, AS/NZS 1170.2:2021. Australian/New Zealand Standard. ![]() [3]ASCE (American Society of Civil Engineers), 2022. Minimum Design Loads for Buildings and Other Structures, ASCE 7-22. ASCE, Reston, USA. ![]() [4]CaoSY, WangT, GeYJ, et al., 2012. Numerical study on turbulent boundary layers over two-dimensional hills—effects of surface roughness and slope. Journal of Wind Engineering and Industrial Aerodynamics, 104-106:342-349. ![]() [5]CEN (European Committee for Standardization), 2005. Eurocode 1: Actions on Structures—Part 1-4: General Actions—Wind Actions, BS EN 1991-1-4:2005. British Standard. ![]() [6]ChaudhariA, HellstenA, HämäläinenJ, 2016. Full-scale experimental validation of large-eddy simulation of wind flows over complex terrain: the Bolund hill. Advances in Meteorology, 2016:9232759. ![]() [7]CheynetE, 2020. Wind Field Simulation (Text-Based Input). Zenodo. ![]() [8]FlayRGJ, KingAB, RevellM, et al., 2019. Wind speed measurements and predictions over Belmont hill, Wellington, New Zealand. Journal of Wind Engineering and Industrial Aerodynamics, 195:104018. ![]() [9]HanY, ShenL, XuGJ, et al., 2018. Multiscale simulation of wind field on a long-span bridge site in mountainous area. Journal of Wind Engineering and Industrial Aerodynamics, 177:260-274. ![]() [10]HuP, HanY, XuGJ, et al., 2018. Numerical simulation of wind fields at the bridge site in mountain-gorge terrain considering an updated curved boundary transition section. Journal of Aerospace Engineering, 31(3):04018008. ![]() [11]HuWC, YangQS, ChenHP, et al., 2021. Wind field characteristics over hilly and complex terrain in turbulent boundary layers. Energy, 224:120070. ![]() [12]IshiharaT, HibiK, OikawaS, 1999. A wind tunnel study of turbulent flow over a three-dimensional steep hill. Journal of Wind Engineering and Industrial Aerodynamics, 83(1-3):95-107. ![]() [13]IshiharaT, QianGW, QiYH, 2020. Numerical study of turbulent flow fields in urban areas using modified k–ε model and large eddy simulation. Journal of Wind Engineering and Industrial Aerodynamics, 206:104333. ![]() [14]JiangFY, ZhangMJ, LiYL, et al., 2021. Field measurement study of wind characteristics in mountain terrain: focusing on sudden intense winds. Journal of Wind Engineering and Industrial Aerodynamics, 218:104781. ![]() [15]JingHM, LiaoHL, MaCM, et al., 2019. Influence of elevated water levels on wind field characteristics at a bridge site. Advances in Structural Engineering, 22(7):1783-1795. ![]() [16]LiuZQ, IshiharaT, HeXH, et al., 2016. LES study on the turbulent flow fields over complex terrain covered by vegetation canopy. Journal of Wind Engineering and Industrial Aerodynamics, 155:60-73. ![]() [17]LundTS, WuXH, SquiresKD, 1998. Generation of turbulent inflow data for spatially-developing boundary layer simulations. Journal of Computational Physics, 140(2):233-258. ![]() [18]MaYL, LiuHP, 2017. Large-eddy simulations of atmospheric flows over complex terrain using the immersed-boundary method in the weather research and forecasting model. Boundary-Layer Meteorology, 165(3):421-445. ![]() [19]MOT (Ministry of Transport of the People’s Republic of China), 2018. Wind-Resistant Design Specification for Highway Bridges, JTG/T 3360-01-2018. National Standards of the People’s Republic of China(in Chinese). ![]() [20]NRCC (National Research Council of Canada), 2020. National Building Code User’s Guide–Structural Commentaries (Part 4), NRCC2020. Canadian Commission on Building and Fire Codes, NRCC, Ottawa, Canada. ![]() [21]PiroozAAS, FlayRGJ, TurnerR, 2021. New Zealand design wind speeds, directional and lee-zone multipliers proposed for AS/NZS 1170.2:2021. Journal of Wind Engineering and Industrial Aerodynamics, 208:104412. ![]() [22]RenHH, LaimaSJ, ChenWL, et al., 2018. Numerical simulation and prediction of spatial wind field under complex terrain. Journal of Wind Engineering and Industrial Aerodynamics, 180:49-65. ![]() [23]TangHJ, LiYL, ShumKM, et al., 2020. Non-uniform wind characteristics in mountainous areas and effects on flutter performance of a long-span suspension bridge. Journal of Wind Engineering and Industrial Aerodynamics, 201:104177. ![]() [24]TangXY, ZhaoSM, FanB, et al., 2019. Micro-scale wind resource assessment in complex terrain based on CFD coupled measurement from multiple masts. Applied Energy, 238:806-815. ![]() [25]UchidaT, OhyaY, 2003. Large-eddy simulation of turbulent airflow over complex terrain. Journal of Wind Engineering and Industrial Aerodynamics, 91(1-2):219-229. ![]() [26]WangT, CaoSY, GeYJ, 2014. Effects of inflow turbulence and slope on turbulent boundary layer over two-dimensional hills. Wind and Structures, 19(2):219-232. ![]() [27]XingLF, ZhangMJ, LiYL, et al., 2021. Large eddy simulation of the fluctuating wind environment at a bridge site in the mountainous area. Advances in Bridge Engineering, 2(1):26. ![]() [28]YanL, GuoZS, ZhuLD, et al., 2016. Wind tunnel study of wind structure at a mountainous bridge location. Wind and Structures, 23(3):191-209. ![]() [29]YangQS, ZhouT, YanBW, et al., 2020. LES study of turbulent flow fields over hilly terrains—comparisons of inflow turbulence generation methods and SGS models. Journal of Wind Engineering and Industrial Aerodynamics, 204:104230. ![]() [30]YangQS, ZhouT, YanBW, et al., 2021. LES study of topographical effects of simplified 3D hills with different slopes on ABL flows considering terrain exposure conditions. Journal of Wind Engineering and Industrial Aerodynamics, 210:104513. ![]() [31]ZhangMJ, LiYL, WangB, et al., 2018. Numerical simulation of wind characteristics at bridge site considering thermal effects. Advances in Structural Engineering, 21(9):1313-1326. ![]() [32]ZhangMJ, JiangFY, LiYL, et al., 2022. Multi-point field measurement study of wind characteristics in mountain terrain: focusing on periodic thermally-developed winds. Journal of Wind Engineering and Industrial Aerodynamics, 228:105102. ![]() [33]ZhouT, YangQS, YanBW, et al., 2022a. Detached eddy simulation of turbulent flow fields over steep hilly terrain. Journal of Wind Engineering and Industrial Aerodynamics, 221:104906. ![]() [34]ZhouT, YanBW, YangQS, et al., 2022b. POD analysis of spatiotemporal characteristics of wake turbulence over hilly terrain and their relationship to hill slope, hill shape and inflow turbulence. Journal of Wind Engineering and Industrial Aerodynamics, 224:104986. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>