CLC number:
On-line Access: 2025-03-31
Received: 2024-01-07
Revision Accepted: 2024-03-12
Crosschecked: 2025-03-31
Cited: 0
Clicked: 1131
Citations: Bibtex RefMan EndNote GB/T7714
https://orcid.org/0009-0006-4883-6888
Xiao LI, Juanjuan REN, Shijie DENG, Zeyong ZHANG, Xueyi LIU. Multi-field, time-varying behavior, and cracking mechanisms of early-age concrete in balastless track beds[J]. Journal of Zhejiang University Science A,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.A2400013 @article{title="Multi-field, time-varying behavior, and cracking mechanisms of early-age concrete in balastless track beds", %0 Journal Article TY - JOUR
早期道床多场时变行为及开裂机理研究机构:1西南交通大学,高速铁路线路工程教育部重点实验室,中国成都,610031;2中国五冶集团有限公司,中国成都,610063 目的:无砟轨道现浇混凝土部件,尤其是双块式轨道整体现浇道床,在材料不良、环境不利、施工不当等多种因素影响下,早期开裂问题频发。本文旨在建立一个更为完善的早期道床开裂风险预测模型,在此基础上研究早期道床多场时变行为和开裂机理,探寻早期道床开裂风险影响规律并提出合理的开裂风险管控措施。 创新点:1.建立更完善的早期道床开裂风险预测模型,且模型假设条件更少,准确性更高,适用场景更全面;2.系统分析道床早期多场耦合时变规律和开裂机理;3.揭示材料、环境以及施工三类因素对混凝土道床早期开裂风险的影响规律,并提出了道床早期开裂控制措施。 方法:1.通过理论推导,统一混凝土早期到成型全过程的水化-热-湿-力耦合多场控制方程,并建立早期道床开裂风险预测模型;2.通过数值模拟,得到道床早期多场耦合时变规律和开裂机理,并揭示不同因素对混凝土道床早期开裂风险的影响规律。 结论:1.在典型工况条件下,在水化场方面,道床最大水化速率出现在浇筑后约7.0 h;道床终凝点在浇筑后约9.5 h;道床水化在第7 d的水化进程可达最终水化度的90%。在温度场方面,对流换热和太阳辐射是影响道床早期温度场的主要环境因素;道床表层最高温度浇筑后约16.0 h达到最大值,比入模温度高约15.0 °C。在湿度场方面,早期道床内双块式轨枕附件存在局部不均匀湿度区域。在力场方面,约在第1.25 d,轨枕四周新老混凝土结合面开裂的风险系数已超过1.00;在第7 d,轨枕附近道床八字形裂纹的开裂风险达到最大,风险系数约为0.75。2.温度变形是道床表层开裂的主导因素,也是道床板底开裂的主要驱动力;如果不考虑道床混凝土早期徐变,会大幅度高估开裂风险,因此建模时应当考虑徐变的影响。3.综合性的早期道床开裂风险控制措施方面,建议按照优先级降低的顺序(水化热→优化放热峰值时刻→增强保温措施→选择合理浇筑时刻→控制入模温度),进行早期道床混凝土开裂控制。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]CEB (Comité Euro-international du Béton), 1990. CEB-FIP Model Code 1990, First Draft. CEB Bulletin D’information, Lausanne, Switzerland. ![]() [2]CerveraM, FariaR, OliverJU, et al., 2002. Numerical modelling of concrete curing, regarding hydration and temperature phenomena. Computers & Structures, 80(18-19):1511-1521. ![]() [3]de SchutterG, 1999. Degree of hydration based Kelvin model for the basic creep of early age concrete. Materials and Structures, 32(4):260-265. ![]() [4]de SchutterG, 2002. Finite element simulation of thermal cracking in massive hardening concrete elements using degree of hydration based material laws. Computers & Structures, 80(27-30):2035-2042. ![]() [5]de SchutterG, TaerweL, 1996. Degree of hydration-based description of mechanical properties of early age concrete. Materials and Structures, 29(6):335-344. ![]() [6]DuMY, 2015. Thermo-Hygro-Mechanical Model of Early-Age Concrete Based on Micro-Pore Structure Evolution. MS Thesis, Zhejiang University, Hangzhou, China(in Chinese). ![]() [7]GawinD, PesaventoF, SchreflerBA, 2006. Hygro-thermo-chemo-mechanical modelling of concrete at early ages and beyond. Part I: hydration and hygro-thermal phenomena. International Journal for Numerical Methods in Engineering, 67(3):299-331. ![]() [8]HuRP, ZhangRL, WangMS, et al., 2018. Experimental study on the cracking of concrete about the high speed railway in big temperature difference area of Gobi. Bulletin of the Chinese Ceramic Society, 37(6):2042-2047 (in Chinese). ![]() [9]KünzelHM, 1995. Simultaneous Heat and Moisture Transport in Building Components. One- and Two-Dimensional Calculation Using Simple Parameters. Fraunhofer IRB Verlag Suttgart. ![]() [10]MiaoCW, 2018. Early shrinkage cracking of modern concrete and its inhibiting technology. Journal of Xuzhou Institute of Technology (Natural Sciences Edition), 33(3):1-8 (in Chinese). ![]() [11]MOHURD (Ministry of Housing and Urban-Rural Development of the People’s Republic of China), 2004. Code for Design of Concrete Structures, GB 50010-2002. National Standards of the People’s Republic of China(in Chinese). ![]() [12]RenJJ, DengSJ, ZhangKY, et al., 2021. Design theories and maintenance technologies of slab tracks for high-speed railways in China: a review. Transportation Safety and Environment, 3(4):tdab024. ![]() [13]RenJJ, ZhangQ, ZhangYC, et al., 2023. Evaluation of slab track quality indices based on entropy weight-fuzzy analytic hierarchy process. Engineering Failure Analysis, 149:107244. ![]() [14]van BreugelK, 1995. Numerical simulation of hydration and microstructural development in hardening cement-based materials: (II) applications. Cement and Concrete Research, 25(3):522-530. ![]() [15]ZhangJ, HouDW, SunW, 2010. Experimental study on the relationship between shrinkage and interior humidity of concrete at early age. Magazine of Concrete Research, 62(3):191-199. ![]() [16]ZhangJ, GaoY, WangZB, 2013. Evaluation of shrinkage induced cracking performance of low shrinkage engineered cementitious composite by ring tests. Composites Part B: Engineering, 52:21-29. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>