CLC number:
On-line Access: 2025-04-30
Received: 2024-07-19
Revision Accepted: 2024-08-12
Crosschecked: 2025-04-30
Cited: 0
Clicked: 1391
Zheming TONG, Haidan WANG, Shuiguang TONG, Qi YANG, Taotao NIE. Thermocline performance in a molten salt thermocline energy storage tank with annular-arranged and cross-arranged diffusers[J]. Journal of Zhejiang University Science A,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.A2400359 @article{title="Thermocline performance in a molten salt thermocline energy storage tank with annular-arranged and cross-arranged diffusers", %0 Journal Article TY - JOUR
熔盐温跃层储能单罐环形与十字布置扩散器对温跃层性能的影响研究机构:1浙江大学,流体动力基础件与机电系统全国重点实验室,中国杭州,310058;2浙江大学,机械工程学院,中国杭州,310058;3西子清洁能源装备制造股份有限公司,中国杭州,310021 目的:温跃层储能单罐储放热过程中易出现黏性指进等现象,影响热分层效率,且缺少对扩散器的优化分析。传统双盘径向流扩散器在单工质满罐储热应用中存在局限性且缺乏优化分析。本文旨在研究和比较环形布置扩散器和十字布置扩散器在熔盐储热罐中的性能,分析不同扩散器设计、结构参数(管径、开孔角度)对熔盐储罐温跃层性能的影响,并提出优化方法以提高储能效率。 创新点:1.提出了两种适用于单工质熔盐储罐且具有较小截面积比的新型管式扩散器(环形布置扩散器和十字布置扩散器),并比较了不同扩散器结构参数对温跃层厚度的影响;2.开发了一种针对管式扩散器开孔直径的优化算法,成功改善了射流均匀性,进一步减小了温跃层厚度。 方法:1.建立考虑真实工况的三维瞬态计算流体动力学模型,用于模拟熔盐储罐在不同扩散器配置下的储放热过程和温跃层的形成与演变(图1);2.应用开发的迭代优化算法,调整扩散器上各开孔的直径,并通过最小化各孔口出流流量的标准差,达到优化目的(图2);3.通过仿真模拟,得到不同结构参数对温跃层性能的影响(图19和20)。 结论:1.环形扩散器性能更优,且温跃层厚度比交叉扩散器在储热和放热工况下分别减少4.23%和5.41%,更适合工程应用。2.冲击射流对温跃层厚度有显著影响,且斜向射流效果最佳;45°~60°孔口角度可平衡水平与垂直热交换,减少冷热流体混合。3.大管径扩散器可降低湍流扰动,改善温度分层。4.扩散器孔口尺寸的优化增强了熔盐储罐内温度分布的均匀性,且所提出的优化方法可使温跃层的厚度减少6.78%。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]AfrinS, KumarV, BharathanD, et al., 2014. Computational analysis of a pipe flow distributor for a thermocline based thermal energy storage system. Journal of Solar Energy Engineering, 136(2):021010. ![]() [2]AngeliniG, LucchiniA, ManzoliniG, 2014. Comparison of thermocline molten salt storage performances to commercial two-tank configuration. Energy Procedia, 49:694-704. ![]() [3]CagnoliM, GaggioliW, LiberatoreR, et al., 2023. CFD modelling of an indirect thermocline energy storage prototype for CSP applications. Solar Energy, 259:86-98. ![]() [4]CascettaM, CauG, PudduP, et al., 2016. A comparison between CFD simulation and experimental investigation of a packed-bed thermal energy storage system. Applied Thermal Engineering, 98:1263-1272. ![]() [5]ChandraYP, MatuskaT, 2020. Numerical prediction of the stratification performance in domestic hot water storage tanks. Renewable Energy, 154:1165-1179. ![]() [6]CheS, KimJ, JeonJ, et al., 2024. Thermodynamic analysis of molten salt-based single-tank thermal energy storage system with heat transfer enhanced by gas injection. Journal of Energy Storage, 77:109959. ![]() [7]CheralathanM, VelrajR, RenganarayananS, 2006. Heat transfer and parametric studies of an encapsulated phase change material based cool thermal energy storage system. Journal of Zhejiang University-SCIENCE A, 7(11):1886-1895. ![]() [8]DengYJ, SunDL, NiuMY, et al., 2021. Performance assessment of a novel diffuser for stratified thermal energy storage tanks–the nonequal-diameter radial diffuser. Journal of Energy Storage, 35:102276. ![]() [9]ELSihyES, WangXH, XuC, et al., 2021. Numerical investigation on simultaneous charging and discharging process of molten-salt packed-bed thermocline storage tank employing in CSP plants. Renewable Energy, 172:1417-1432. ![]() [10]GajbhiyeP, KedareS, BoseM, 2022. Experimental analysis of parameters influencing thermal stratification in single media single tank storage system with flow distributor. Thermal Science and Engineering Progress, 30:101243. ![]() [11]HosseinniaSM, AkbariH, SorinM, 2021. Numerical analysis of thermocline evolution during charging phase in a stratified thermal energy storage tank. Journal of Energy Storage, 40:102682. ![]() [12]HuaWS, YanHF, ZhangXL, et al., 2022. Review of salt hydrates-based thermochemical adsorption thermal storage technologies. Journal of Energy Storage, 56:106158. ![]() [13]HuangYH, ChenQ, 2016. Numerical investigation on thermal effects by adding thin compartmental plates into cooling enclosures with heat-leaking walls. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 17(6):485-496. ![]() [14]JoshiV, WasnikC, WadegaonkarA, et al., 2021. Influence of porosity and permeability of flow distributor on thermal stratification in single media storage tank. Journal of Energy Storage, 44:103241. ![]() [15]KaloudisE, GrigoriadisDGE, PapanicolaouE, 2016. Numerical simulations of constant-influx gravity currents in confined spaces: application to thermal storage tanks. International Journal of Thermal Sciences, 108:1-16. ![]() [16]KeilanyMA, MilhéM, BézianJJ, et al., 2020. Experimental evaluation of vitrified waste as solid fillers used in thermocline thermal energy storage with parametric analysis. Journal of Energy Storage, 29:101285. ![]() [17]KhuranaH, MajumdarR, SahaSK, 2024. Improved realistic stratification model for estimating thermocline thickness in vertical thermal energy storage undergoing simultaneous charging and discharging. Journal of Energy Storage, 82:110490. ![]() [18]KosmanW, RusinA, ReichelP, 2023. Application of an energy storage system with molten salt to a steam turbine cycle to decrease the minimal acceptable load. Energy, 266:126480. ![]() [19]LiSH, ZhangYX, LiY, et al., 2014. Experimental study of inlet structure on the discharging performance of a solar water storage tank. Energy and Buildings, 70:490-496. ![]() [20]LouWR, FanYL, LuoLG, 2020. Single-tank thermal energy storage systems for concentrated solar power: flow distribution optimization for thermocline evolution management. Journal of Energy Storage, 32:101749. ![]() [21]LouWR, LuoLG, HuaYC, et al., 2021. A review on the performance indicators and influencing factors for the thermocline thermal energy storage systems. Energies, 14(24):8384. ![]() [22]LouWR, BaudinN, RouxS, et al., 2023a. Impact of buoyant jet entrainment on the thermocline behavior in a single-medium thermal energy storage tank. Journal of Energy Storage, 71:108017. ![]() [23]LouWR, XieBS, AubrilJ, et al., 2023b. Optimized flow distributor for stabilized thermal stratification in a single-medium thermocline storage tank: a numerical and experimental study. Energy, 263:125709. ![]() [24]MahmoudinezhadS, SadiM, GhiasiradH, et al., 2023. A comprehensive review on the current technologies and recent developments in high-temperature heat exchangers. Renewable and Sustainable Energy Reviews, 183:113467. ![]() [25]ManuKV, AnandP, ChetiaUK, et al., 2015. Effects of instabilities and coherent structures on the performance of a thermocline based thermal energy storage. Applied Thermal Engineering, 87:768-778. ![]() [26]NallusamyN, SampathS, VelrajR, 2006. Study on performance of a packed bed latent heat thermal energy storage unit integrated with solar water heating system. Journal of Zhejiang University-SCIENCE A, 7(8):1422-1430. ![]() [27]PachecoJE, ShowalterSK, KolbWJ, 2002. Development of a molten-salt thermocline thermal storage system for parabolic trough plants. Journal of Solar Energy Engineering, 124(2):153-159. ![]() [28]ParidaDR, AdvaithS, DaniN, et al., 2022. Assessing the impact of a novel hemispherical diffuser on a single-tank sensible thermal energy storage system. Renewable Energy, 183:202-218. ![]() [29]PizzolatoA, DonatoF, VerdaV, et al., 2015. CFD-based reduced model for the simulation of thermocline thermal energy storage systems. Applied Thermal Engineering, 76:391-399. ![]() [30]PrietoC, Tagle-SalazarPD, PatiñoD, et al., 2024. Use of molten salts tanks for seasonal thermal energy storage for high penetration of renewable energies in the grid. Journal of Energy Storage, 86:111203. ![]() [31]ShiH, ZhouH, MaPN, et al., 2021. Experimental investigation of migration and solidification of molten salt leaking through tank cracks. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 22(12):979-991. ![]() [32]TongZM, ChenX, TongSG, et al., 2022. Dense residual LSTM-attention network for boiler steam temperature prediction with uncertainty analysis. ACS Omega, 7(13):11422-11429. ![]() [33]TongZM, WangHD, TongSG, et al., 2023. Investigating the thermal-hydraulic enhancement and ash deposition characteristics of leeward-cut spiral finned tube heat exchangers. International Communications in Heat and Mass Transfer, 149:107145. ![]() [34]VotyakovEV, BonanosAM, 2015. Algebraic model for thermocline thermal storage tank with filler material. Solar Energy, 122:1154-1157. ![]() [35]WeissJ, Ortega-FernándezI, MüllerR, et al., 2021. Improved thermocline initialization through optimized inlet design for single-tank thermal energy storage systems. Journal of Energy Storage, 42:103088. ![]() [36]XuC, LiuM, TangHY, et al., 2023. Thermodynamic analysis of the thermocline storage tank with time-varying charging parameters. Applied Thermal Engineering, 219:119477. ![]() [37]YinHB, DingJ, JiangRH, et al., 2017. Thermocline characteristics of molten-salt thermal energy storage in porous packed-bed tank. Applied Thermal Engineering, 110:855-863. ![]() [38]ZhangQJ, DongJN, ChenH, et al., 2024. Dynamic characteristics and economic analysis of a coal-fired power plant integrated with molten salt thermal energy storage for improving peaking capacity. Energy, 290:130132. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>