
CLC number:
On-line Access: 2025-07-29
Received: 2024-08-19
Revision Accepted: 2024-10-20
Crosschecked: 2025-07-29
Cited: 0
Clicked: 1725
Citations: Bibtex RefMan EndNote GB/T7714
https://orcid.org/0000-0002-1613-7082
| 
 
 Xin ZHANG, Hao HE, Xiaofeng CHEN, Yachao LI, Tianhang ZHANG, Yuehui WANG, Kai ZHU, Ke WU. Flow loss characteristics in parallel confluence sections of tunnels[J]. Journal of Zhejiang University Science A,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.A2400405 @article{title="Flow loss characteristics in parallel confluence sections of tunnels", %0 Journal Article TY  - JOUR 
 平行式汇流分岔隧道流动损失特性研究机构:1西安石油大学,电子工程学院,中国西安,710065;2浙江大学,平衡建筑研究中心,中国杭州,310028;3浙江大学,城市火灾安全工程研究中心,中国杭州,310058;4中国铁路隧道股份有限公司,中国郑州,450007;5中国计量大学,能源环境与安全工程学院,中国杭州,310018;6香港理工大学,智慧消防与城市韧性研究中心,中国香港,999077 目的:分岔隧道的平行式加速车道段中会产生空气和污染物的汇流现象,这给隧道通风排烟系统的设计及运营带来了难点和挑战。本文旨在探讨公路隧道平行式汇流段的流动特征及损失特性,并在此基础上,构建可供设计使用的隧道汇流损失系数的预测公式,以期为分岔隧道的节能型通风设计和高效控烟提供重要的理论参数依据。 创新点:1.通过解耦汇流比q和汇流角θ对平行式汇流段中流场特征的影响,阐明平行式分岔隧道的汇流损失机制;2.通过引入流场"突扩-渐缩"局部损失和流线夹角修正,提出能准确预测5°~15°平行式分岔公路隧道汇流损失系数的半经验理论公式,以弥补分岔公路隧道通风设计计算理论的不足。 方法:1.采用计算流体动力学方法,构建平行式汇流公路隧道气流运动的三维数学模型,并结合比尺模型,分析5°~15°的平行式公路隧道汇流段流动特征及损失系数随汇流比与夹角的变化规律(图8~12);2.理论构建可供设计使用的平行式公路隧道汇流损失系数的半经验理论公式(公式(8)和(9))。 结论:1.空气流经平行式汇流段时,两股速度不等的气流在平行加速段进行碰撞,形成速度不连续的断面,产生卷吸效应;在汇流比q较小时,主线高速气流卷吸匝道低速气流,使得平行加速段与渐变段连接处上部出现流动分离;而在q较大时,匝道高速气流卷吸主线低速气流,使得在汇流段靠近主线一侧出现流动分离。2.平行式汇流段损失主要是由结构突变及射流卷吸效应衍生的流速梯度变化、流线弯曲及流动分离引起的;伴随着q的变化,汇流前主线隧道与匝道间风量比Q与横截面积比φ的不匹配,将加大汇流段横断面的速度梯度,增强射流卷吸效应,强化流线弯曲及流动分离,从而产生更大汇流局部损失系数|K13|和|K23|。3.在q较小时,卷吸效应造成的流动分离范围及流线弯曲程度几乎不受θ影响,此时K13和K23基本不随θ变化;在q较大时,随着θ增大,主线一侧流动分离范围越小,匝道流线弯曲程度越弱,此时,主线和匝道汇流损失系数|K13|及|K23|均随之减小。4.基于Bassett公式,通过引入流场"突扩-渐缩"局部损失和修正流线夹角,提出了能够准确预测5°~15°平行式分岔公路隧道汇流损失系数的半经验公式。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
 Reference[1]Abou-HaidarNI, DixonSL, 1992. Pressure losses in combining subsonic flows through branched ducts. Journal of Turbomachinery, 114(1):264-270.  [2]BassettMD, WinterboneDE, PearsonRJ, 2001. Calculation of steady flow pressure loss coefficients for pipe junctions. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 215(8):861-881.  [3]BlaisdellFW, MansonPW, 1963. Loss of Energy at Sharp-Edged Pipe Junctions in Water Conveyance Systems. Technical Bulletin 1283, US Department of Agriculture, USA.  [4]ChenT, ZhouD, LuZJ, et al., 2021. Study of the applicability and optimal arrangement of alternative jet fans in curved road tunnel complexes. Tunnelling and Underground Space Technology, 108:103721.  [5]ChenZE, ChenXF, KongXM, et al., 2024. Study on the flow characteristics and local loss characteristics of the confluence segment of bifurcate tunnel. Modern Tunnelling Technology, 61(3):53-60 (in Chinese).  [6]GaoZH, LiuMG, ZhaoPJ, et al., 2024. Influence of tunnel slope on the one-dimensional spread of smoke transportation and temperature distribution in tunnel fires. Tunnelling and Underground Space Technology, 146:105650.  [7]GardelAE, 1957. Les pertes de charge dans les ecoulements au travers de branchments en te. Bulletin Technique de la Suisse Romande, 83(9):123-130 (in French).  [8]HagerWH, 1984. An approximate treatment of flow in branches and bends. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 198(1):63-69.  [9]ItōH, ImaiK, 1973. Energy losses at 90° pipe junctions. Journal of the Hydraulics Division, 99(9):1353-1368.  [10]JafariS, FarhaniehB, AfshinH, 2023. Numerical investigation of critical velocity in curved tunnels: parametric study and establishment of new model. Tunnelling and Underground Space Technology, 135:105021.  [11]KrólA, KrólM, 2021. Numerical investigation on fire accident and evacuation in a urban tunnel for different traffic conditions. Tunnelling and Underground Space Technology, 109:103751.  [12]LiL, LiYL, HuangJT, et al., 2001. Numerical simulation and experimental study on water flow in Y-type tube. Journal of Hydraulic Engineering, (3):49-53 (in Chinese).  [13]LiangCJY, NanS, ShaoXL, et al., 2021. Calculation method for air resistance coefficient of vehicles in tunnel with different traffic conditions. Journal of Building Engineering, 44:102971.  [14]LiuF, YinC, ChenJZ, et al., 2020. Numerical simulation study on the influence of intersection angle of confluence section on ventilation characteristics of freeway tunnel. Modern Tunnelling Technology, 57(S1):645-650 (in Chinese).  [15]MillerDS, 1971. Internal Flow: a Guide to Losses in Pipe and Duct Systems. British Hydromechanics Research Association, Cranfield, UK, p.303-360.  [16]MohamedMS, LarueJC, 1990. The decay power law in grid-generated turbulence. Journal of Fluid Mechanics, 219:195-214.  [17]OkaK, NozakiT, ItoH, 1996. Energy losses due to combination of flow at tees. JSME International Journal Series B Fluids and Thermal Engineering, 39(3):489-498.  [18]QinWJ, HuCG, GuoLP, et al., 2006. Effect of near-wall grid size on turbulent flow solutions. Transactions of Beijing Institute of Technology, 26(5):388-392 (in Chinese).  [19]ShiX, LüHX, ZhuDL, et al., 2013. Flow resistance and characteristics of PVC tee pipes. Transactions of the Chinese Society for Agricultural Machinery, 44(1):73-79 (in Chinese).  [20]ShihTH, LiouWW, ShabbirA, et al., 1995a. A new k-ϵ eddy viscosity model for high Reynolds number turbulent flows. Computers & Fluids, 24(3):227-238.  [21]ShihTH, ZhuJ, LumleyJL, 1995b. A new Reynolds stress algebraic equation model. Computer Methods in Applied Mechanics and Engineering, 125(1-4):287-302.  [22]TavoularisS, CorrsinS, 1981. Experiments in nearly homogeneous turbulent shear flow with a uniform mean temperature gradient. Part 2. The fine structure. Journal of Fluid Mechanics, 104:349-367.  [23]WangMN, DengT, YuL, 2024. Development and prospects of operation and disaster prevention ventilation technology in China’s traffic tunnels. Modern Tunnelling Technology, 61(2):152-166 (in Chinese).  [24]XuFQ, DuZG, ChenC, 2022. Distribution and development characteristics of urban road tunnels in China. Modern Tunnelling Technology, 59(6):35-41 (in Chinese).  [25]ZhangX, ZhangTT, HuangZY, et al., 2018. Local loss and flow characteristic of dividing flow in bifurcated tunnel. Journal of Zhejiang University (Engineering Science), 52(3):440-445 (in Chinese).  [26]ZhangX, ZhangTH, HouYG, et al., 2019. Local loss model of dividing flow in a bifurcate tunnel with a small angle. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 20(1):21-35.  [27]ZhangX, GuoS, DangXY, et al., 2024. Experimental investigation on the influence of portal-blocking speed on fire behaviors in tunnel structure. Case Studies in Thermal Engineering, 53:103811.  [28]ZhuK, HuHP, ZhangX, et al., 2024. Influence of tunnel bifurcation form on the local ventilation resistance characteristics of dividing flow. Journal of China University of Metrology, 35(2):197-202 (in Chinese).   Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
    310027, China Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE | ||||||||||||||


 ORCID:
 ORCID: 
Open peer comments: Debate/Discuss/Question/Opinion
<1>