CLC number:
On-line Access: 2025-04-30
Received: 2024-08-21
Revision Accepted: 2024-12-17
Crosschecked: 2025-04-30
Cited: 0
Clicked: 554
Citations: Bibtex RefMan EndNote GB/T7714
https://orcid.org/0000-0002-3221-181X
https://orcid.org/0009-0009-2208-8123
Jianyu WANG, Qindan CHU, Chuanjie FANG, Baoku ZHU, Liping ZHU. Recent advances in chiral drug separation membranes: design, mechanisms, challenges, and prospects[J]. Journal of Zhejiang University Science A,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.A2400409 @article{title="Recent advances in chiral drug separation membranes: design, mechanisms, challenges, and prospects", %0 Journal Article TY - JOUR
手性药物分离膜近期研究进展:设计、机制、挑战及展望机构:1浙江大学绍兴研究院,大健康材料分中心,中国绍兴,312000;2凯里学院,理学院,中国凯里,556011;3浙江大学,高分子合成与功能构造教育部重点实验室,中国杭州,310058;4浙江大学,教育部膜与水处理技术工程研究中心,中国杭州,310058 概要:手性是自然界普遍存在的一种基本性质,在医药科学领域具有重要意义。手性药物的独特之处在于它们的分子结构互为镜像、不可重合,这种立体异构特性对药物的功能、代谢途径、有效性和安全性产生显著影响。手性药物的对映体可在人体内表现出不同的药理作用,通常一种分子具有良好药效,而其对映体没有药效甚至具有毒性。因此,有效分离和纯化手性药物对映体至关重要。虽然近年来关于手性药物分离膜的研究报道日益丰富,但综述类论文较少。本文从材料角度出发,对手性药物分离膜的近期研究进展进行系统梳理,重点介绍膜材料的种类及其制备方法,总结其分离机制,探讨其面临的挑战和未来发展前景,旨在为该领域的进一步研究和新型膜材料开发提供有益参考和借鉴。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]AliI, SuhailM, AlothmanZA, et al., 2018. Stereoselective interactions of profen stereomers with human plasma proteins using nano solid phase micro membrane tip extraction and chiral liquid chromatography. Separation and Purification Technology, 197:336-344. ![]() [2]BewleyCA, SulikowskiGA, YangZJ, et al., 2023. Properties of configurationally stable atropoenantiomers in macrocyclic natural products and the chrysophaentin family. Accounts of Chemical Research, 56(4):414-424. ![]() [3]ChanJY, ZhangHC, NolvachaiY, et al., 2018. Incorporation of homochirality into a zeolitic imidazolate framework membrane for efficient chiral separation. Angewandte Chemie International Edition, 57(52):17130-17134. ![]() [4]ChangCL, QiXY, ZhangJW, et al., 2015. Facile synthesis of magnetic homochiral metal–organic frameworks for“enantioselective fishing”. Chemical Communications, 51(17):3566-3569. ![]() [5]ChenWB, LiuHX, ChenYT, et al., 2023. Preparation and application of a chiral Am7CD-modified COF composite membrane by interfacial polymerization. Separation and Purification Technology, 323:124406. ![]() [6]ChenXH, LiangR, QinC, et al., 2022. Regulating Co-MOF array films to construct Co3O4 in-situ sensors for ultrasensitive and highly selective triethylamine detection. Sensors and Actuators B: Chemical, 368:132147. ![]() [7]ChenXX, SunWW, YangCY, et al., 2020. Preparation of poly L-glutamic acid ester membrane for enantioselective resolution of p-hydroxyphenylglycine. Membrane Science and Technology, 40(1):78-83 (in Chinese). ![]() [8]ChenYL, XiaL, LuZC, et al., 2021. In situ fabrication of chiral covalent triazine frameworks membranes for enantiomer separation. Journal of Chromatography A, 1654:462475. ![]() [9]ConleyKM, GodboutL, WhiteheadMA, et al., 2017. Reversing the structural chirality of cellulosic nanomaterials. Cellulose, 24(12):5455-5462. ![]() [10]CuiYY, YangCX, YanXP, 2020. Thiol-yne click post-modification for the synthesis of chiral microporous organic networks for chiral gas chromatography. ACS Applied Materials & Interfaces, 12(4):4954-4961. ![]() [11]DasS, XuSX, BenT, et al., 2018. Chiral recognition and separation by chirality-enriched metal-organic frameworks. Angewandte Chemie International Edition, 57(28):8629-8633. ![]() [12]DuerinckT, DenayerJFM, 2015. Metal-organic frameworks as stationary phases for chiral chromatographic and membrane separations. Chemical Engineering Science, 124:179-187. ![]() [13]DżygielP, WieczorekPP, 2010. Chapter 3–Supported liquid membranes and their modifications: definition, classification, theory, stability, application and perspectives. In: Kislik VS (Ed.), Liquid Membranes. Elsevier, Amsterdam, the Netherland, p.73-140. ![]() [14]GaálováJ, YalcinkayaF, CuřínováP, et al., 2020. Separation of racemic compound by nanofibrous composite membranes with chiral selector. Journal of Membrane Science, 596:117728. ![]() [15]GogoiM, GoswamiR, IngolePG, et al., 2020. Selective permeation of L-tyrosine through functionalized single-walled carbon nanotube thin film nanocomposite membrane. Separation and Purification Technology, 233:116061. ![]() [16]GongHX, ZhangSZ, LiuN, et al., 2022. Retarded transport properties of graphene oxide based chiral separation membranes modified with dipeptide. Separation and Purification Technology, 288:120642. ![]() [17]GössiA, RiedlW, SchuurB, 2018. Enantioseparation with liquid membranes. Journal of Chemical Technology & Biotechnology, 93(3):629-644. ![]() [18]GuLN, ChenQB, LiXX, et al., 2020. Enantioseparation processes and mechanisms in functionalized graphene membranes: facilitated or retarded transport? Chirality, 32(6):842-853. ![]() [19]GuoHK, XuXY, LiJQ, et al., 2022. Chemically tailored microporous nanocomposite membranes with multi-channels for intensified solvent permeation. Journal of Membrane Science, 660:120877. ![]() [20]GuoX, WangY, QinYM, et al., 2020. Structures, properties and application of alginic acid: a review. International Journal of Biological Macromolecules, 162:618-628. ![]() [21]HalmschlagB, SteurerX, PutriSP, et al., 2019. Tailor-made poly-γ-glutamic acid production. Metabolic Engineering, 55:239-248. ![]() [22]HanHD, LiuW, XiaoY, et al., 2021. Advances of enantioselective solid membranes. New Journal of Chemistry, 45(15):6586-6599. ![]() [23]HanZS, ShiW, ChengP, 2018. Synthetic strategies for chiral metal-organic frameworks. Chinese Chemical Letters, 29(6):819-822. ![]() [24]HemasaAL, NaumovskiN, MaherWA, et al., 2017. Application of carbon nanotubes in chiral and achiral separations of pharmaceuticals, biologics and chemicals. Nanomaterials, 7(7):186. ![]() [25]HuangB, LiK, MaQY, et al., 2023. Homochiral metallacycle used as a stationary phase for capillary gas chromatographic separation of chiral and achiral compounds. Analytical Chemistry, 95(35):13289-13296. ![]() [26]HuangCH, GuoZH, ZhengX, et al., 2020. Deformable metal–organic framework nanosheets for heterogeneous catalytic reactions. Journal of the American Chemical Society, 142(20):9408-9414. ![]() [27]HuangYN, ZengH, XieL, et al., 2022. Super-assembled chiral mesostructured heteromembranes for smart and sensitive couple-accelerated enantioseparation. Journal of the American Chemical Society, 144(30):13794-13805. ![]() [28]IijimaSJN, 1991. Helical microtubules of graphitic carbon. Nature, 354(6348):56-58. ![]() [29]JiangYD, ZhangJH, XieSM, et al., 2012. Chiral separation of D,L-tyrosine through nitrocellulose membrane. Journal of Applied Polymer Science, 124(6):5187-5193. ![]() [30]KangZX, XueM, FanLL, et al., 2013. “Single nickel source” in situ fabrication of a stable homochiral MOF membrane with chiral resolution properties. Chemical Communications, 49(90):10569-10571. ![]() [31]KeJ, YangK, BaiXP, et al., 2021. A novel chiral polyester composite membrane: preparation, enantioseparation of chiral drugs and molecular modeling evaluation. Separation and Purification Technology, 255:117717. ![]() [32]KimJH, KimJH, JegalJ, et al., 2003. Optical resolution of α-amino acids through enantioselective polymeric membranes based on polysaccharides. Journal of Membrane Science, 213(1-2):273-283. ![]() [33]KöhlerJEH, HohlaM, RichtersM, et al., 1992. Cyclodextrinderivate als chirale selektoren-untersuchung der wechselwirkung mit (R,S)-methyl-2-chlorpropionat durch enantio-selektive gaschromatographie, NMR-spektroskopie und moleküldynamiksimulation. Angewandte Chemie, 104(3):362-364 (in German). ![]() [34]LeekH, ThunbergL, JonsonAC, et al., 2017. Strategy for large-scale isolation of enantiomers in drug discovery. Drug Discovery Today, 22(1):133-139. ![]() [35]LiH, WangLP, YuG, 2021. Covalent organic frameworks: design, synthesis, and performance for photocatalytic applications. Nano Today, 40:101247. ![]() [36]LiHC, HuangQ, LiD, et al., 2018. Generation of a molecular imprinted membrane by coating cellulose acetate onto a ZrO2-modified alumina membrane for the chiral separation of mandelic acid enantiomers. Organic Process Research & Development, 22(3):278-285. ![]() [37]LiHY, ZhangJL, JiangLL, et al., 2023. Chiral plasmonic Au–Ag core shell nanobipyramid for SERS enantiomeric discrimination of biologically relevant small molecules. Analytica Chimica Acta, 1239:340740. ![]() [38]LiXX, ChenQB, TongXF, et al., 2021. Chiral separation of β-cyclodextrin modified graphene oxide membranes with a complete enantioseparation performance. Journal of Membrane Science, 634:119350. ![]() [39]LiuGF, ShengJH, ZhaoYL, 2017. Chiral covalent organic frameworks for asymmetric catalysis and chiral separation. Science China Chemistry, 60(8):1015-1022. ![]() [40]LiuJL, YuanWB, LiCF, et al., 2021. L-cysteine-modified graphene oxide-based membrane for chiral selective separation. ACS Applied Materials & Interfaces, 13(41):49215-49223. ![]() [41]LiuJL, ChuTF, ChengMM, et al., 2023a. Bovine serum albumin functional graphene oxide membrane for effective chiral separation. Journal of Membrane Science, 668:121198. ![]() [42]LiuJL, ZouGZ, HouSF, 2023b. Chiral gold nanoparticles/graphene oxide membranes with ultrahigh and stable permeance for sieving and enantioseparation. Chemical Engineering Journal, 467:143366. ![]() [43]LiuTQ, LiZ, WangJJ, et al., 2021. Solid membranes for chiral separation: a review. Chemical Engineering Journal, 410:128247. ![]() [44]LiuYH, LiuLM, ChenX, et al., 2021. Single-crystalline ultrathin 2D porous nanosheets of chiral metal–organic frameworks. Journal of the American Chemical Society, 143(9):3509-3518. ![]() [45]LuYZH, ZhangHC, ChanJY, et al., 2019. Homochiral MOF–polymer mixed matrix membranes for efficient separation of chiral molecules. Angewandte Chemie International Edition, 58(47):16928-16935. ![]() [46]LuYZH, ChanJY, ZhangHC, et al., 2021a. Cyclodextrin metal-organic framework-polymer composite membranes towards ultimate and stable enantioselectivity. Journal of Membrane Science, 620:118956. ![]() [47]LuYZH, ZhangHC, ZhuYL, et al., 2021b. Emerging homochiral porous materials for enantiomer separation. Advanced Functional Materials, 31(25):2101335. ![]() [48]LuYZH, ZhangHC, LiuSS, et al., 2022. Precise sieving of chiral molecules by a crosslinked cyclodextrin-cellulose nanofiber composite membrane. Journal of Membrane Science, 663:121016. ![]() [49]LuoH, BaiXP, LiuHX, et al., 2022. β-Cyclodextrin covalent organic framework modified-cellulose acetate membranes for enantioseparation of chiral drugs. Separation and Purification Technology, 285:120336. ![]() [50]LvS, MaCB, CongHL, et al., 2022. Synthesis of 3,5-dichlorobenzene isocyanate-derived β-cyclodextrin and 3,5-dimethyl phenyl isocyanate-derivedβ-cyclodextrin chiral stationary phases and their applications in the separation of chiral compounds. Separation and Purification Technology, 294:121147. ![]() [51]MaMC, LuXF, GuoY, et al., 2022. Combination of metal-organic frameworks (MOFs) and covalent organic frameworks (COFs): recent advances in synthesis and analytical applications of MOF/COF composites. TrAC Trends in Analytical Chemistry, 157:116741. ![]() [52]MaruyamaA, AdachiN, TakatsukiT, et al., 1990. Enantioselective permeation of α-amino acid isomers through poly(amino acid)-derived membranes. Macromolecules, 23(10):2748-2752. ![]() [53]MatencioA, Navarro-OrcajadaS, García-CarmonaF, et al., 2020. Applications of cyclodextrins in food science. A review. Trends in Food Science & Technology, 104:132-143. ![]() [54]MiaoL, YangY, TuYY, et al., 2017. Chiral resolution by polysulfone-based membranes prepared via mussel-inspired chemistry. Reactive and Functional Polymers, 115:87-94. ![]() [55]Navarro-SánchezJ, Argente-GarcíaAI, Moliner-MartínezY, et al., 2017. Peptide metal–organic frameworks for enantioselective separation of chiral drugs. Journal of the American Chemical Society, 139(12):4294-4297. ![]() [56]NobleRD, 1992. Generalized microscopic mechanism of facilitated transport in fixed site carrier membranes. Journal of Membrane Science, 75(1-2):121-129. ![]() [57]NovoselovKS, GeimAK, MorozovSV, et al., 2004. Electric field effect in atomically thin carbon films. Science, 306(5696):666-669. ![]() [58]PanXR, JiJH, ZhangNN, et al., 2020. Research progress of graphene-based nanomaterials for the environmental remediation. Chinese Chemical Letters, 31(6):1462-1473. ![]() [59]PetrusováZ, SloukaZ, VobeckáL, et al., 2023. Microreaction and membrane technologies for continuous single-enantiomer production: a review. Catalysis Reviews, 65(3):773-821. ![]() [60]PintoMMM, FernandesC, TiritanME, 2020. Chiral separations in preparative scale: a medicinal chemistry point of view. Molecules, 25(8):1931. ![]() [61]QiuX, KeJ, ChenWB, et al., 2022. β-cyclodextrin-ionic liquid functionalized chiral composite membrane for enantioseparation of drugs and molecular simulation. Journal of Membrane Science, 660:120870. ![]() [62]QiuX, ChenWB, ChenYT, et al., 2023. Separation of chiral drugs through dual chiral ionic liquid functionalized composite membrane and study on chiral recognition mechanism. Journal of Membrane Science, 687:122087. ![]() [63]ReaR, de AngelisMG, BaschettiMG, 2019. Models for facilitated transport membranes: a review. Membranes, 9(2):26. ![]() [64]RenYF, YuF, LiXG, et al., 2021. Recent progress on adsorption and membrane separation for organic contaminants on multi-dimensional graphene. Materials Today Chemistry, 22:100603. ![]() [65]SanganyadoE, LuZJ, FuQG, et al., 2017. Chiral pharmaceuticals: a review on their environmental occurrence and fate processes. Water Research, 124:527-542. ![]() [66]ShiDC, YuX, FanWD, et al., 2021. Polycrystalline zeolite and metal-organic framework membranes for molecular separations. Coordination Chemistry Reviews, 437:213794. ![]() [67]SoleymaniE, AlinezhadH, DarvishGM, et al., 2017. Enantioseparation performance of CNTs as chiral selectors for the separation of ibuprofen isomers: a dispersion corrected DFT study. Journal of Materials Chemistry B, 5(33):6920-6929. ![]() [68]SonSH, JegalJ, 2007. Chiral separation of D,L-serine racemate using a molecularly imprinted polymer composite membrane. Journal of Applied Polymer Science, 104(3):1866-1872. ![]() [69]SongLJ, PanM, ZhaoR, et al., 2020. Recent advances, challenges and perspectives in enantioselective release. Journal of Controlled Release, 324:156-171. ![]() [70]SuttipatD, ButchaS, AssavapanumatS, et al., 2020. Chiral macroporous MOF surfaces for electroassisted enantioselective adsorption and separation. ACS Applied Materials & Interfaces, 12(32):36548-36557. ![]() [71]TanHX, LiuTQ, ZhangX, et al., 2020. Preparation of vortex porous graphene chiral membrane for enantioselective separation. Analytical Chemistry, 92(20):13630-13633. ![]() [72]TangB, WangW, HouHP, et al., 2022. A β-cyclodextrin covalent organic framework used as a chiral stationary phase for chiral separation in gas chromatography. Chinese Chemical Letters, 33(2):898-902. ![]() [73]TangS, MeiXM, ChenW, et al., 2018. A high-performance chiral selector derived from chitosan (p-methylbenzylurea) for efficient enantiomer separation. Talanta, 185:42-52. ![]() [74]UlbrichtM, 2004. Membrane separations using molecularly imprinted polymers. Journal of Chromatography B, 804(1):113-125. ![]() [75]van der EntA, van’t RietA, KeurentjesJTF, et al., 2001. Design criteria for dense permeation-selective membranes for enantiomer separations. Journal of Membrane Science, 185(2):207-221. ![]() [76]VedovelloP, Marcio ParanhosC, FernandesC, et al., 2022a. Chiral polymeric membranes: recent applications and trends. Separation and Purification Technology, 280:119800. ![]() [77]VedovelloP, CostaJAS, FernandesC, et al., 2022b. Evaluation of chiral separation by Pirkle-type chiral selector based mixed matrix membranes. Separation and Purification Technology, 289:120722. ![]() [78]WangBM, WangL, ZhaZ, et al., 2022. Hydrogen-bonded, hierarchically structured single-component chiral poly(ionic liquid) porous membranes: facile fabrication and application in enantioselective separation. CCS Chemistry, 4(9):2930-2937. ![]() [79]WangFMJ, HeKQ, WangRX, et al., 2024. A homochiral porous organic cage-polymer membrane for enantioselective resolution. Advanced Materials, 36(29):2400709. ![]() [80]WangJF, JinXX, LiCH, et al., 2019. Graphene and graphene derivatives toughening polymers: toward high toughness and strength. Chemical Engineering Journal, 370:831-854. ![]() [81]WangY, ZhangYM, YuC, et al., 2024. Chiral covalent organic frameworks as promising materials for racemate resolution. ACS Applied Polymer Materials, 6(15):8706-8720. ![]() [82]WangZH, ChenZ, ZhengZD, et al., 2023. Nanocellulose-based membranes for highly efficient molecular separation. Chemical Engineering Journal, 451:138711. ![]() [83]WengXL, BaezJE, KhitererM, et al., 2015. Chiral polymers of intrinsic microporosity: selective membrane permeation of enantiomers. Angewandte Chemie International Edition, 54(38):11214-11218. ![]() [84]XieR, ChuLY, DengJG, 2008. Membranes and membrane processes for chiral resolution. Chemical Society Reviews, 37(6):1243-1263. ![]() [85]XuJ, XueYF, JianXX, et al., 2022. Understanding of chiral site-dependent enantioselective identification on a plasmon-free semiconductor based SERS substrate. Chemical Science, 13(22):6550-6557. ![]() [86]XuJ, WangM, LiMM, et al., 2023. Paper-based chiral biosensors using enzyme encapsulation in hydrogel network for point-of-care detection of lactate enantiomers. Analytica Chimica Acta, 1279:341834. ![]() [87]YangLL, SunJW, 2022. Ammonia to chiral α-amino acid. Nature Catalysis, 5(6):471-472. ![]() [88]YeQ, LiJ, HuangYY, et al., 2023. Preparation of a cyclodextrin metal-organic framework (CD-MOF) membrane for chiral separation. Journal of Environmental Chemical Engineering, 11(2):109250. ![]() [89]YooS, ParkQH, 2019. Metamaterials and chiral sensing: a review of fundamentals and applications. Nanophotonics, 8(2):249-261. ![]() [90]YuC, YinBH, WangY, et al., 2023. Advances in membrane-based chiral separation. Coordination Chemistry Reviews, 495:215392. ![]() [91]YuXX, WangYH, YangQW, et al., 2020. De novo synthesis of microspheical cellulose 3,5-dichlorophenylcarbamates: an organic-inorganic hybrid chiral stationary phase for enantiospearation. Separation and Purification Technology, 238:116480. ![]() [92]YuYY, XuNY, ZhangJH, et al., 2020. Chiral metal–organic framework D-His-ZIF-8@SiO2 core–shell microspheres used for HPLC enantioseparations. ACS Applied Materials & Interfaces, 12(14):16903-16911. ![]() [93]YuanC, WuXW, GaoR, et al., 2019. Nanochannels of covalent organic frameworks for chiral selective transmembrane transport of amino acids. Journal of the American Chemical Society, 141(51):20187-20197. ![]() [94]ZengLL, YiQ, LiuQ, et al., 2021. Development of a new method and device for chiral drug enrichment and enantioseparation: multiple-phase extraction and in situ coupling of crystallization. Separation and Purification Technology, 257:117884. ![]() [95]ZengLL, PengXH, PengL, et al., 2022. Green and efficient enantioseparation of amlodipine using a novel pairwise crystallization-circulating extraction coupling method aimed at in situ reuse of mother liquor. Separation and Purification Technology, 299:121774. ![]() [96]ZhangGH, FuKQ, XiJB, et al., 2019. Structure screening and performance restoration of chiral separation materials based on chitosan derivatives. Carbohydrate Polymers, 214:259-268. ![]() [97]ZhangJH, XieSM, ChenL, et al., 2015. Homochiral porous organic cage with high selectivity for the separation of racemates in gas chromatography. Analytical Chemistry, 87(15):7817-7824. ![]() [98]ZhangQ, RenSR, LiA, et al., 2021. Tartaric acid-based ionic liquid-type chiral selectors: effect of cation species on their enantioseparation performance in capillary electrophoresis. Separation and Purification Technology, 275:119228. ![]() [99]ZhangQ, ZhaoXB, ChengY, et al., 2023. Multilayer-functionalized molecularly imprinted nanocomposite membranes for efficient acteoside separation. Microporous and Mesoporous Materials, 348:112345. ![]() [100]ZhangSY, ChenX, SunLD, et al., 2020. β-Cyclodextrin-self-assembled nanochannel membrane for the separation of chiral drugs. ACS Applied Nano Materials, 3(5):4351-4356. ![]() [101]ZhangSY, ZhouJ, LiHB, 2022. Chiral covalent organic framework packed nanochannel membrane for enantioseparation. Angewandte Chemie International Edition, 61(27):e202204012. ![]() [102]ZhangXM, TuZH, LiH, et al., 2017. Supported protic-ionic-liquid membranes with facilitated transport mechanism for the selective separation of CO2. Journal of Membrane Science, 527:60-67. ![]() [103]ZhangYF, XuZH, ZhangTT, et al., 2020. Self-assembly of robust graphene oxide membranes with chirality for highly stable and selective molecular separation. Journal of Materials Chemistry A, 8(33):16985-16993. ![]() [104]ZhangYQ, TanX, LiuX, et al., 2019. Fabrication of multilayered molecularly imprinted membrane for selective recognition and separation of artemisinin. ACS Sustainable Chemistry & Engineering, 7(3):3127-3137. ![]() [105]ZhaoH, WangLR, LiuGH, et al., 2023. Hollow Rh-COF@COF S-scheme heterojunction for photocatalytic nicotinamide cofactor regeneration. ACS Catalysis, 13(10):6619-6629. ![]() [106]ZhaoHW, CuiXF, YuanLM, 2024. Chiral separation of d,l-phenylglycine by cellulose triacetate membranes. Journal of Applied Polymer Science, 141(26):e55571. ![]() [107]ZhaoX, WongM, MaoCY, et al., 2014. Size-selective crystallization of homochiral camphorate metal–organic frameworks for lanthanide separation. Journal of the American Chemical Society, 136(36):12572-12575. ![]() [108]ZhouZZ, LiD, WuQG, et al., 2020. The investigation of the reversed enantio-selectivity by an alpha-cyclodextrin doped thin film composite membrane. Chemical Engineering Research and Design, 160:437-446. ![]() [109]ZhuQJ, CaiZW, ZhouPL, et al., 2023. Recent progress of membrane technology for chiral separation: a comprehensive review. Separation and Purification Technology, 309:123077. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>