
CLC number:
On-line Access: 2025-11-24
Received: 2024-10-21
Revision Accepted: 2025-05-01
Crosschecked: 2025-11-25
Cited: 0
Clicked: 2027
Yang YU, Bo SHI, Qing LÜ, Chaofeng WU. Reliability-based optimization of laterally loaded piles with necking defects[J]. Journal of Zhejiang University Science A,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.A2400484 @article{title="Reliability-based optimization of laterally loaded piles with necking defects", %0 Journal Article TY - JOUR
考虑颈缩缺陷影响的侧向受荷桩可靠度优化设计方法机构:1浙江大学,海洋学院,中国舟山,316021;2浙江大学海南研究院,中国三亚,572025;3浙江大学,建筑工程学院,中国杭州,310058;4中国能源建设集团浙江省电力设计院有限公司,中国杭州,310012 目的:侧向受荷桩广泛应用于砂土地基基础中,但其现浇施工易因钻孔塌孔引发颈缩缺陷,导致桩基在侧向荷载作用下的安全性显著降低。针对这一关键设计难题,本研究旨在开发一种基于可靠性的多目标优化设计框架,以平衡桩基础安全性、经济性与设计鲁棒性,减少颈缩缺陷影响。 创新点:1.提出了一种融合p-y曲线分析与随机模拟的高效方法,实现了对砂土参数、颈缩缺陷深度与尺寸变异等多源不确定性的量化评估;2.通过构建可靠性多目标优化框架,将桩身性能、成本控制及抗风险能力纳入统一设计体系,突破了传统单目标优化局限。 方法:1.集成随机建模与数值仿真技术,建立考虑土体参数空间变异性和颈缩缺陷几何随机性的桩-土相互作用计算方法(图1和2);2.通过系统化的设计框架,结合帕累托前沿优化算法生成备选优化方案,利用实验案例验证模型有效性(图8);3.开展参数敏感性分析,揭示颈缩缺陷深度与砂土摩擦角对最优设计的影响规律(图9~12)。 结论:1.基于电子表格计算方法,实现了综合考虑成本、安全性与稳健性的含颈缩缺陷的侧向受荷桩优化设计;2.该方法可在设计阶段主动应对颈缩缺陷影响,提升工程可靠性;3.发现缺陷埋深对设计稳健性有显著影响:当颈缩缺陷位于桩体深处(埋深大于0.4倍桩长)时,基于桩身内力分布特性,缺陷对整体稳健性的影响可忽略。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1](American Petroleum Institute)API, 2011. Geotechnical and Foundation Design Considerations, ANSI/API RP 2GEO:2011. API, Washington, USA. ![]() [2]AugustesenAH, BrødbækKT, MøllerM, et al., 2009. Numerical modelling of large-diameter steel piles at Horns Rev. Proceedings of the 12th International Conference on Civil, Structural and Environmental Engineering Computing, article 239. ![]() [3]FattahMY, Al-ShakarchiY, KadhimYM, 2010. Investigation on the use of micropiles for substitution of defected piles by the finite element method. Journal of Engineering, 16(3):5300-5314. ![]() [4]HariswaranS, PremalathaK, 2021. Experimental investigation on the behavior of a defective pile subject to a lateral load. Soil Mechanics and Foundation Engineering, 58(4):339-346. ![]() [5]JuangCH, WangL, 2013. Reliability-based robust geotechnical design of spread foundations using multi-objective genetic algorithm. Computers and Geotechnics, 48:96-106. ![]() [6]KallehaveD, ThilstedCL, LiingaardMA, 2012. Modification of the API p-y formulation of initial stiffness of sand. Proceedings of the Offshore Site Investigation and Geotechnics: Integrated Technologies–Present and Future, p.465-472. ![]() [7]KharmandaGM, AntypasIR, 2016. Reliability-based design optimization strategy for soil tillage equipment considering soil parameter uncertainty. Advanced Engineering Research, 16(2):136-147. ![]() [8]KhoshnevisanS, GongWP, WangL, et al., 2014. Robust design in geotechnical engineering-an update. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, 8(4):217-234. ![]() [9]KhoshnevisanS, WangL, JuangCH, 2017. Response surface-based robust geotechnical design of supported excavation-spreadsheet-based solution. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, 11(1):90-102. ![]() [10]LeeJS, SongJU, HongWT, et al., 2018. Application of time domain reflectometer for detecting necking defects in bored piles. NDT & E International, 100:132-141. ![]() [11]LiHJ, TongLY, LiuSY, et al., 2018. Construction and verification of a unified p-y curve for laterally loaded piles. Bulletin of Engineering Geology and the Environment, 77(3):987-997. ![]() [12]LiJP, ZhangJ, LiuSN, et al., 2015. Reliability-based code revision for design of pile foundations: practice in Shanghai, China. Soils and Foundations, 55(3):637-649. ![]() [13]LiKQ, YinZY, LiuY, 2023. Influences of spatial variability of hydrothermal properties on the freezing process in artificial ground freezing technique. Computers and Geotechnics, 159:105448. ![]() [14]LowBK, TehCI, TangWH, 2001. Stochastic nonlinear p-y analysis of laterally loaded piles. Proceedings of the International Conference on Structural Safety and Reliability. ![]() [15]MOC (Ministry of Construction of the People’s Republic of China), 2008. Technical Code for Building Pile Foundations, JGJ 94-2008. National Standards of the People’s Republic of China(in Chinese). ![]() [16]MOHURD (Ministry of Housing and Urban-Rural Development of the People’s Republic of China), 2011. Code for Design of Concrete Structures, GB/T 50010-2010. National Standards of the People’s Republic of China(in Chinese). ![]() [17]PengX, LiDQ, CaoZJ, et al., 2017. Reliability-based robust geotechnical design using Monte Carlo simulation. Bulletin of Engineering Geology and the Environment, 76(3):1217-1227. ![]() [18]PhoonKK, CaoZJ, JiJ, et al., 2022. Geotechnical uncertainty, modeling, and decision making. Soils and Foundations, 62(5):101189. ![]() [19]PoulosHG, 2005. Pile behavior—consequences of geological and construction imperfections. Journal of Geotechnical and Geoenvironmental Engineering, 131(5):538-563. ![]() [20]ReeseLC, CoxWR, KoopFD, 1974. Analysis of laterally loaded piles in sand. Proceedings of the Offshore Technology Conference. ![]() [21]SchmoorKA, AchmusM, 2020. Reliability-based evaluation of offshore design approaches for tensile piles in noncohesive soil. International Journal of Offshore and Polar Engineering, 30(2):240-247. ![]() [22]StuedleinAW, NeelyWJ, GurtowskiTM, 2012. Reliability-based design of augered cast-in-place piles in granular soils. Journal of Geotechnical and Geoenvironmental Engineering, 138(6):709-717. ![]() [23]SunYZ, SunHL, TangC, et al., 2023. Monotonic uplift behavior of anchored pier foundations in soil overlying rock. Journal of Zhejiang University-SCIENCE A, 24(7):569-583. ![]() [24]WangZ, YuY, SunHY, et al., 2020. Robust optimization of the constructional time delay in the design of double-row stabilizing piles. Bulletin of Engineering Geology and the Environment, 79(1):53-67. ![]() [25]XuKJ, PoulosHG, 2000. Measured and predicted axial response of piles with diameter discontinuities. Geotechnical Engineering, 31(3):171-191. ![]() [26]XuZJ, GuoZX, 2021. Experimental study on bearing characteristics and soil deformation of necking pile with cap using transparent soils technology. Advances in Civil Engineering, 2021:6625556. ![]() [27]YuY, LiXM, PanXH, et al., 2020. A robust and efficient method of designing piles for landslide stabilization. Environmental & Engineering Geoscience, 26(4):481-492. ![]() [28]YuYS, LiLL, KongXM, et al., 2024. Deformation and stability of the seawall, considering the strength uncertainty of cement mixing piles. Journal of Zhejiang University-SCIENCE A, 25(6):483-501. ![]() [29]ZhouP, XuJH, XuCJ, et al., 2024. Influence of the penetration of adjacent X-section cast-in-place concrete (XCC) pile on the existing XCC pile in sand. Journal of Zhejiang University-SCIENCE A, 25(7):557-572. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2026 Journal of Zhejiang University-SCIENCE | ||||||||||||||



ORCID:
Open peer comments: Debate/Discuss/Question/Opinion
<1>