
CLC number:
On-line Access: 2025-11-24
Received: 2024-11-21
Revision Accepted: 2025-05-09
Crosschecked: 2025-11-25
Cited: 0
Clicked: 997
Citations: Bibtex RefMan EndNote GB/T7714
Xu ZHANG, Binbin YAN, Heng ZHANG, Yunfei ZHANG, Shuangxi LIU, Wei HUANG. Design and aerodynamic performance of a wide-speed-range morphing aircraft with horizontal takeoff[J]. Journal of Zhejiang University Science A,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.A2400539 @article{title="Design and aerodynamic performance of a wide-speed-range morphing aircraft with horizontal takeoff", %0 Journal Article TY - JOUR
水平起降宽速域变体设计与气动特性分析机构:1西北工业大学,无人系统技术研究院,中国西安,710072;2西北工业大学,航天学院,中国西安,710072;3清华大学,航天航空学院,中国北京,100084;4上海航谛科技有限公司,中国上海,201818;5国防科技大学,先进推进技术实验室,中国长沙,410073 目的:为使飞行器在亚声速至高超声速宽速域范围内均具有优异的空气动力学性能,本文旨在提出一种具有变后掠翼结构的创新飞行器外形,并验证其所具有的性能优势。 创新点:1.基于类乘波体构型设计飞行器,有利于在后续工作中进一步布置进气道;2.飞行器后掠角可以在30°、45°和60°三个典型角度之间切换,因此在宽速域、大空域下均具有良好的气动性能。 方法:1.在CATIA软件中根据设计理念与设计参数建模得到飞行器外形;2.通过与标准模型数据的对比验证所用数值计算方法及网格划分结果的准确性;3.对飞行器不同后掠角外形在大飞行包线内不同马赫数和高度下的气动性能进行对比分析,验证所设计飞行器具有的性能优势。 结论:1.在水平起飞阶段,三种外形中最具优势的是30°后掠角;在跨音速到超音速阶段,45°后掠角配外形现最佳;而在马赫数1.5至高超音速阶段,60°后掠角的性能最为理想。2.飞行器在0.3马赫下的最大升阻比达到约8.804,为水平起飞提供了强有力的气动支持。3.在相同飞行条件下,飞行器在不同后掠角的升力系数和阻力系数存在差异;在三种不同的变形配置下,升阻比随着攻角的增加呈先上升后下降的趋势,而实现最佳升阻比的外形配置则随速度的变化而不同。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]AbdulrahimM, LindR, 2005. Control and simulation of a multi-role morphing micro air vehicle. AIAA Guidance, Navigation, and Control Conference and Exhibit. ![]() [2]AjajRM, JankeeGK, 2018. The transformer aircraft: a multimission unmanned aerial vehicle capable of symmetric and asymmetric span morphing. Aerospace Science and Technology, 76:512-522. ![]() [3]AndersenG, CowanD, PiatakD, 2007. Aeroelastic modeling, analysis and testing of a morphing wing structure. The 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. ![]() [4]BalepinV, ListonG, 2001. The SteamJetTM: Mach 6+ turbine engine with inlet air conditioning. The 37th Joint Propulsion Conference and Exhibit. ![]() [5]BattagliaM, SellittoA, GiamundoA, et al., 2024. Advanced material thermomechanical modelling of shape memory alloys applied to automotive design. Shape Memory and Superelasticity, 10(3):297-313. ![]() [6]ByeD, McClureP, 2007. Design of a morphing vehicle. The 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. ![]() [7]ChenSH, LiuJ, HuangW, et al., 2020. Design methodology of an osculating cone waverider with adjustable sweep and dihedral angles. Journal of Zhejiang University-SCIENCE A, 21(9):770-782. ![]() [8]ClarkC, KloeselK, RatnayakeN, 2011. A technology pathway for airbreathing, combined-cycle, horizontal space launch through SR-71 based trajectory modeling. 17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. ![]() [9]DaiP, YanBB, HuangW, et al., 2020. Design and aerodynamic performance analysis of a variable-sweep-wing morphing waverider. Aerospace Science and Technology, 98:105703. ![]() [10]DingF, 2016. Research of a Novel Airframe/Inlet Integrated Full-Waverider Aerodynamic Design Methodology for Air-Breathing Hypersonic Vehicles. PhD Thesis, National University of Defense Technology, Changsha, China(in Chinese). ![]() [11]FengC, ChenSS, YuanW, et al., 2023. A wide-speed-range aerodynamic configuration by adopting wave-riding-strake wing. Acta Astronautica, 202:442-452. ![]() [12]FlanaganJ, StrutzenbergR, MyersR, et al., 2007. Development and flight testing of a morphing aircraft, the NextGen MFX-1. The 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. ![]() [13]HuXZ, ChenXQ, ParksGT, et al., 2016. Review of improved Monte Carlo methods in uncertainty-based design optimization for aerospace vehicles. Progress in Aerospace Sciences, 86:20-27. ![]() [14]IvancoT, ScottR, LoveM, et al., 2007. Validation of the Lockheed Martin morphing concept with wind tunnel testing. The 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. ![]() [15]JinZK, YuZH, MengFS, et al., 2024. Parametric design method and lift/drag characteristics analysis for a wide-range, wing-morphing glide vehicle. Aerospace, 11(4):257. ![]() [16]JitsukawaT, AdachiH, AbeT, et al., 2017. Bio-inspired wing-folding mechanism of micro air vehicle (MAV). Artificial Life and Robotics, 22(2):203-208. ![]() [17]KhanZA, AgrawalSK, 2011. Study of biologically inspired flapping mechanism for micro air vehicles. AIAA Journal, 49(7):1354-1365. ![]() [18]LiDC, ZhaoSW, da RonchA, et al., 2018. A review of modelling and analysis of morphing wings. Progress in Aerospace Sciences, 100:46-62. ![]() [19]LiSB, LuoSB, HuangW, et al., 2013. Influence of the connection section on the aerodynamic performance of the tandem waverider in a wide-speed range. Aerospace Science and Technology, 30(1):50-65. ![]() [20]LiSB, HuangW, WangZG, et al., 2014. Design and aerodynamic investigation of a parallel vehicle on a wide-speed range. Science China Information Sciences, 57(12):1-10. ![]() [21]LiSB, WangZG, HuangW, et al., 2018. Design and investigation on variable Mach number waverider for a wide-speed range. Aerospace Science and Technology, 76:291-302. ![]() [22]LiX, WangXG, ZhouHY, et al., 2024. A novel evasion guidance for hypersonic morphing vehicle via intelligent maneuver strategy. Chinese Journal of Aeronautics, 37(5):441-461. ![]() [23]LiYF, XiangYY, ShiLJ, et al., 2024. Efficient reliability analysis via a nonlinear autoregressive multi-fidelity surrogate model and active learning. Journal of Zhejiang University-SCIENCE A, 25(11):922-937. ![]() [24]LiuB, LiangH, HanZH, et al., 2022. Surrogate-based aerodynamic shape optimization of a morphing wing considering a wide Mach-number range. Aerospace Science and Technology, 124:107557. ![]() [25]LiuSX, YanBB, HuangW, et al., 2023. Current status and prospects of terminal guidance laws for intercepting hypersonic vehicles in near space: a review. Journal of Zhejiang University-SCIENCE A, 24(5):387-403. ![]() [26]LoveM, ZinkP, StroudR, et al., 2007. Demonstration of morphing technology through ground and wind tunnel tests. The 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. ![]() [27]LuoSB, YueH, LiuJ, 2023. Optimization design of aerodynamic layout for hypersonic morphing aircraft. Electronic Technology & Software Engineering, (2):51-55 (in Chinese). ![]() [28]LuoSB, YueH, LiuJ, et al., 2024. Study on aerodynamic performance of morphing hypersonic vehicle in wide-speed range. Transactions of Nanjing University of Aeronautics and Astronautics, 41(2):184-201. ![]() [29]MackenzieD, 2012. A flapping of wings. Science, 335(6075):1430-1433. ![]() [30]MiaoXJ, GaoGJ, WangJB, et al., 2023. Effect of low operating temperature on the aerodynamic characteristics of a high-speed train. Journal of Zhejiang University-SCIENCE A, 24(3):284-298. ![]() [31]PhoenixAA, RogersRE, MaxwellJR, et al., 2019. Mach five to ten morphing waverider: control point study. Journal of Aircraft, 56(2):493-504. ![]() [32]QuF, WangQ, ChengSW, et al., 2025. Aerodynamic shape optimization design of airframe/propulsion integrated hypersonic aircraft with aerodynamics/trajectory/control coupling. Acta Aeronautica et Astronautica Sinica, 46(4):130874 (in Chinese). ![]() [33]RamezaniA, ChungSJ, HutchinsonS, 2017. A biomimetic robotic platform to study flight specializations of bats. Science Robotics, 2(3):aal2505. ![]() [34]RiccioA, SellittoA, BattagliaM, 2024. Morphing spoiler for adaptive aerodynamics by shape memory alloys. Actuators, 13(9):330. ![]() [35]SendW, FischerM, JebensK, et al., 2012. Artificial hinged-wing bird with active torsion and partially linear kinematics. The 28th International Congress of the Aeronautical Sciences, p.1-10. ![]() [36]TzongG, JacobsR, LiguoreS, 2010. Air Vehicle Integration and Technology Research (AVIATR) Task Order 0015: Predictive Capability for Hypersonic Structural Response and Life Prediction: Phase 1-Identification of Knowledge Gaps. The Boeing Company, USA. ![]() [37]WangF, PeiXB, WuGX, et al., 2024. Analysis and design of bat-like flapping-wing aircraft. Aerospace, 11(4):325. ![]() [38]XiePZ, YeK, XiePT, et al., 2024. Supersonic flutter mechanism of “diamond-back” folding wings. Aerospace Science and Technology, 153:109396. ![]() [39]ZhangH, LiJ, YangZ, 2023. Double-decoupled inverse design of natural laminar flow nacelle under transonic conditions. Chinese Journal of Aeronautics, 36(6):1-18. ![]() [40]ZhangH, WangP, TangGJ, et al., 2024a. Fixed-time attitude control for hypersonic morphing vehicles: a dynamic memory event-triggering approach. Aerospace Science and Technology, 155:109577. ![]() [41]ZhangH, WangP, TangGJ, et al., 2024b. Fuzzy disturbance observer-based fixed-time attitude control for hypersonic morphing vehicles. IEEE Transactions on Aerospace and Electronic Systems, 60(5):6577-6593. ![]() [42]ZhangTT, YanXT, HuangW, et al., 2021. Multidisciplinary design optimization of a wide speed range vehicle with waveride airframe and RBCC engine. Energy, 235:121386. ![]() [43]ZhangWH, LiuJ, DingF, et al., 2019. Novel integration methodology for an inward turning waverider forebody/inlet. Journal of Zhejiang University-SCIENCE A, 20(12):918-926. ![]() [44]ZhaoZT, HuangW, YanBB, et al., 2018. Design and high speed aerodynamic performance analysis of vortex lift waverider with a wide-speed range. Acta Astronautica, 151:848-863. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE | ||||||||||||||



ORCID:
Open peer comments: Debate/Discuss/Question/Opinion
<1>