CLC number: S811.2
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2015-05-13
Cited: 3
Clicked: 4604
Ying-ming Xie, Qing-biao Xu, Yue-ming Wu, Xin-bei Huang, Jian-xin Liu. Duodenum has the greatest potential to absorb soluble non-ammonia nitrogen in the nonmesenteric gastrointestinal tissues of dairy cows[J]. Journal of Zhejiang University Science B,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.B1400299 @article{title="Duodenum has the greatest potential to absorb soluble non-ammonia nitrogen in the nonmesenteric gastrointestinal tissues of dairy cows", %0 Journal Article TY - JOUR
十二指肠在奶牛非肠系膜系统中吸收可溶性非氨态氮的潜在作用创新点:目前国内外关于研究奶牛非肠系膜系统(瘤胃、瓣胃和十二指肠)内容物内可溶性非氨态氮和组织内转运载体表达的关系非常少。本文研究了瘤胃、瓣胃和十二指肠内可溶性非氨态氮的浓度,并检测了这些组织内小肽和氨基酸转运载体(PepT1、ASCT2、y+LAT1和ATB0,+)的表达量,并进行了系统性的比较,在底物和基因之间建立了一定的联系。 方法:通过酸解法和氨基酸分析仪检测得到了瘤胃、瓣胃和十二指肠内可溶性非氨态氮的浓度(表3和4),并利用荧光定量聚合酶链反应(qRT-PCR)检测了各组织部位的载体基因表达量(图1)。 结论:十二指肠内容物的可溶性非氨态氮浓度最高,并且其载体的表达量也最大,表明十二指肠在奶牛非肠系膜系统中吸收可溶性非氨态氮的潜力最大,其中小肽在可溶性非氨态氮中占了大量比例。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Bröer, S., 2008. Amino acid transport across mammalian intestinal and renal epithelia. Physiol. Rev., 88(1):249-286. ![]() [2]Chen, G., Russell, J.B., Sniffen, C.J., 1987. A procedure for measuring peptides in rumen fluid and evidence that peptide uptake can be a rate-limiting step in ruminal protein degradation. J. Dairy Sci., 70(6):1211-1219. ![]() [3]Choi, C.W., Choi, C.B., 2003. Flow of soluble non-ammonia nitrogen in the liquid phase of digesta entering the omasum of dairy cows given grass silage based diets. Asian Australas. J. Anim. Sci., 16(10):1460-1468. ![]() [4]Choi, C.W., Vanhatalo, A., Huhtanen, P., 2002a. Concentration and estimated flow of soluble non-ammonia nitrogen entering the omasum of dairy cows as influenced by different protein supplements. Agric. Food Sci. Finland, 11(2):79-91. ![]() [5]Choi, C.W., Ahvenjӓrvi, S., Vanhatalo, A., et al., 2002b. Quantitation of the flow of soluble non-ammonia nitrogen entering the omasal canal of dairy cows fed grass silage based diets. Anim. Feed Sci. Tech., 96(3-4):203-220. ![]() [6]Choi, C.W., Vanhatalo, A., Ahvenjärvi, S., et al., 2002c. Effects of several protein supplements on flow of soluble non-ammonia nitrogen from the forestomach and milk production in dairy cows. Anim. Feed Sci. Tech., 102(1-4):15-33. ![]() [7]Clark, J.H., Klusmeyer, T.H., Cameron, M.R., 1992. Symposium: nitrogen metabolism and amino acid nutrition in dairy cattle microbial protein synthesis and flows of nitrogen fractions to the duodenum of dairy cows. J. Dairy Sci., 75(8):2304-2323. ![]() [8]Gilbert, E.R., Wong, E.A., Webb, K.E.Jr., 2008. Board-invited review: peptide absorption and utilization: implications for animal nutrition and health. J. Anim. Sci., 86(9):2135-2155. ![]() [9]Liao, S.F., Vanzant, E.S., Boling, J.A., et al., 2008. Identification and expression pattern of cationic amino acid transporter-1 mRNA in small intestinal epithelia of Angus steers at four production stages. J. Anim. Sci., 86(3):620-631. ![]() [10]Liao, S.F., Vanzant, E.S., Harmon, D.L., et al., 2009. Ruminal and abomasal starch hydrolysate infusions selectively decrease the expression of cationic amino acid transporter mRNA by small intestinal epithelial of forage-fed beef steers. J. Dairy Sci., 92(3):1124-1135. ![]() [11]Livak, K.J., Schmittgen, T.D., 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods, 25(4):402-408. ![]() [12]Matthews, J.C., Webb, K.E.Jr., 1995. Absorption of ![]() [13]Matthews, J.C., Wong, E.A., Bender, P.K., et al., 1996. Demonstration and characterization of dipeptide transport system activity in sheep omasal epithelium by expression of mRNA in Xenopus laevis oocytes. J. Anim. Sci., 74(7):1720-1727. ![]() [14]McCollum, M.Q., Vazquez-Anon, M., Dibner, J.J., et al., 2000. Absorption of 2-hydroxy-4-(methylthio) butanoic acid by isolated sheep ruminal and omasal epithelia. J. Anim. Sci., 78(4):1078-1083. ![]() [15]McDougall, E.I., 1948. Studies on ruminant saliva: the composition and output of sheep saliva. J. Biochem., 43(1):99-109. ![]() [16]Oh, Y.K., Kim, J.H., Kim, K.H., et al., 2008. Effects of level and degradability of dietary protein on ruminal fermentation and concentrations of soluble non-ammonia nitrogen in ruminal and omasal digesta of Hanwoo steers. Asian Australas. J. Anim. Sci., 21(3):392-403. ![]() [17]Piepenbrink, M.S., Schingoethe, D.J., 1998. Ruminal degradation, amino acid composition, and estimated intestinal digestibilities of four protein supplements. J. Dairy Sci., 81(2):454-461. ![]() [18]Rémond, D., Bernard, L., Savary-Auzeloux, I., et al., 2009. Partitioning of nutrient net fluxes across the portal-drained viscera in sheep fed twice daily: effect of dietary protein degradability. Br. J. Nutr., 102(03):370-381. ![]() [19]Reynal, S.M., Ipharraguerre, I.R., Liñeiro, M., et al., 2007. Omasal flow of soluble proteins, peptides, and free amino acids in dairy cows fed diets supplemented with proteins of varying ruminal degradabilities. J. Dairy Sci., 90(4):1887-1903. ![]() [20]Schmittgen, T.D., Livak, K.J., 2008. Analyzing real-time PCR data by the comparative CT method. Nat. Protoc., 3(6):1101-1108. ![]() [21]Tagari, H., Webb, K.E.Jr., Theurer, B., et al., 2008. Mammary uptake, portal-drained visceral flux, and hepatic metabolism of free and peptide-bound amino acids in cows fed steam-flaked or dry-rolled sorghum grain diets. J. Dairy Sci., 91(2):679-697. ![]() [22]Taghizadeh, A., Mesgaran, M.D., Valizadeh, R., et al., 2005. Digestion of feed amino acids in the rumen and intestine of steers measured using a mobile nylon bag technique. J. Dairy Sci., 88(5):1807-1814. ![]() [23]Volden, H., Mydland, L.T., Olaisen, V., 2002. Apparent ruminal degradation and rumen escape of soluble nitrogen fractions in grass and grass silage administered intraruminally to lactating dairy cows. J. Anim. Sci., 80(10):2704-2716. ![]() [24]Webb, K.E.Jr., 1990. Intestinal absorption of protein hydrolysis products: a review. J. Anim. Sci., 68(9):3011-3022. ![]() [25]Webb, K.E.Jr., Dirienzo, D.B., Matthews, J.C., 1993. Recent development in gastrointestinal absorption and tissue utilization of peptides: a review. J. Dairy Sci., 76(1):351-361. ![]() [26]Xu, Q.B., Wu, Y.M., Liu, H.Y., et al., 2014. Establishment and characterization of an omasal epithelial cell model derived from dairy calves for the study of small peptide absorption. PLoS ONE, 9(3):e88993. ![]() [27]Zhao, J.W., Zhao, S.G., Sun, P., et al., 2012. The influence factors of synthesis and utilization in cow milk protein source precursor. Chin. Anim. Husb. Vet. Med., 39:78-81 (in Chinese). ![]() [28]Zhu, W., Tang, C.H., Sun, X.P., et al., 2013. Rumen microbial protein synthesis and milk performance in lactating dairy cows fed the fortified corn stover diet in comparison with alfalfa diet. J. Anim. Physiol. Anim. Nutr., 12(5):633-639. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>