CLC number: R318.08
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2018-11-21
Cited: 0
Clicked: 6639
Zhu Chen, Shang Deng, De-chao Yuan, Kang Liu, Xiao-cong Xiang, Liang Cheng, Dong-qin Xiao, Li Deng, Gang Feng. Novel nano-microspheres containing chitosan, hyaluronic acid, and chondroitin sulfate deliver growth and differentiation factor-5 plasmid for osteoarthritis gene therapy[J]. Journal of Zhejiang University Science B,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.B1800095 @article{title="Novel nano-microspheres containing chitosan, hyaluronic acid, and chondroitin sulfate deliver growth and differentiation factor-5 plasmid for osteoarthritis gene therapy", %0 Journal Article TY - JOUR
携载生长分化因子5质粒的壳聚糖-透明质酸-硫酸软骨素微球在骨关节炎基因治疗中的应用创新点:首次利用壳聚糖、透明质酸、硫酸软骨素三种原料制备可携载GDF-5质粒的三元纳米微球,并将其应用到骨关节炎的治疗中. 方法:在55 °C下,按不同比例混合壳聚糖、透明质酸钠、硫酸软骨素和GDF-5质粒,利用静电吸附原理制备携载GDF-5质粒的三元纳米微球.分别利用扫描电镜和激光粒度散射仪测试微球的形貌和粒径;利用凝胶电泳检测质粒与微球的结合情 况;利用CCK-8检测微球的细胞毒性.将携载GDF-5质粒的微球与软骨细胞共培养,并将脂质体和空载组作为对照组,在预定的时间点通过免疫荧光染色、免疫组化染色以及生化成分分析,观察微球对软骨细胞外基质分泌情况的影响.最后将该纳米微球注射到骨关节炎模型兔体内,通过大体观察、苏木精-伊红(H&E)染色、免疫荧光染色和免疫组化分析该微球对骨关节炎的作用. 结论:本研究成功地利用壳聚糖、透明质酸和硫酸软骨素为原料,制备出携载GDF-5质粒的纳米微球.其中GDF-5质粒可以有效地促进软骨细胞外基质的分泌,透明质酸和硫酸软骨素是临床上常见的治疗骨关节炎的药物.微球具有良好的理化性能,其细胞毒性小,转染效率高,在体内外均能有效地促进软骨细胞外基质的分泌,能够在一定程度上延缓骨关节炎的进展.该纳米微球将是一种极具希望的可应用于骨关节炎基因治疗的载体. 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Abate M, Pulcini D, di Iorio A, et al., 2010. Viscosupplementation with intra-articular hyaluronic acid for treatment of osteoarthritis in the elderly. Curr Pharm Des, 16(6):631-640. ![]() [2]Adachi N, Ochi M, Deie M, et al., 2006. Lateral compartment osteoarthritis of the knee after meniscectomy treated by the transplantation of tissue-engineered cartilage and osteochondral plug. Arthroscopy, 22(1):107-112. ![]() [3]Alcaraz MJ, Megías J, García-Arnandis I, et al., 2010. New molecular targets for the treatment of osteoarthritis. Biochem Pharmacol, 80(1):13-21. ![]() [4]Al-Qadi S, Alatorre-Meda M, Zaghloul EM, et al., 2013. Chitosan-hyaluronic acid nanoparticles for gene silencing: the role of hyaluronic acid on the nanoparticles’ formation and activity. Colloids Surf B Biointerfaces, 103:615-623. ![]() [5]Andriacchi TP, Favre J, 2014. The nature of in vivo mechanical signals that influence cartilage health and progression to knee osteoarthritis. Curr Rheumatol Rep, 16(11):463. ![]() [6]Bor G, Mytych J, Zebrowski J, et al., 2016. Cytotoxic and cytostatic side effects of chitosan nanoparticles as a non-viral gene carrier. Int J Pharm, 513(1-2):431-437. ![]() [7]Bravo-Anaya LM, Soltero JFA, Rinaudo M, 2016. DNA/ chitosan electrostatic complex. Int J Biol Macromol, 88: 345-353. ![]() [8]Bucher C, Gazdhar A, Benneker LM, et al., 2013. Nonviral gene delivery of growth and differentiation factor 5 to human mesenchymal stem cells injected into a 3D bovine intervertebral disc organ culture system. Stem Cells Int, 2013:326828. ![]() [9]Carrillo C, Suñé JM, Pérez-Lozano P, et al., 2014. Chitosan nanoparticles as non-viral gene delivery systems: determination of loading efficiency. Biomed Pharmacother, 68(6):775-783. ![]() [10]Chow G, Knudson CB, Homandberg G, et al., 1995. Increased expression of CD44 in bovine articular chondrocytes by catabolic cellular mediators. J Biol Chem, 270(46):27734-27741. ![]() [11]Coleman CM, Scheremeta BH, Boyce AT, et al., 2011. Delayed fracture healing in growth differentiation factor 5-deficient mice: a pilot study. Clin Orthop Relat Res, 469(10):2915-2924. ![]() [12]Feng G, Wan YQ, Balian G, et al., 2008. Adenovirus-mediated expression of growth and differentiation factor-5 promotes chondrogenesis of adipose stem cells. Growth Factors, 26(3):132-142. ![]() [13]Goldring SR, Goldring MB, 2016. Changes in the osteochondral unit during osteoarthritis: structure, function and cartilage-bone crosstalk. Nat Rev Rheumatol, 12(11):632-644. ![]() [14]Guo HQ, Maher SA, Torzilli PA, 2015. A biphasic finite element study on the role of the articular cartilage superficial zone in confined compression. J Biomech, 48(1):166-170. ![]() [15]Hagiwara K, Nakata M, Koyama Y, et al., 2012. The effects of coating pDNA/chitosan complexes with chondroitin sulfate on physicochemical characteristics and cell transfection. Biomaterials, 33(29):7251-7260. ![]() [16]Hulth A, Lindberg L, Telhag H, 1970. Experimental osteoarthritis in rabbits. Preliminary report. Acta Orthop Scand, 41(5):522-530. ![]() [17]Jevotovsky DS, Alfonso AR, Einhorn TA, et al., 2018. Osteoarthritis and stem cell therapy in humans: a systematic review. Osteoarthrit Cartil, 26(6):711-729. ![]() [18]Kaderli S, Boulocher C, Pillet E, et al., 2015. A novel biocompatible hyaluronic acid-chitosan hybrid hydrogel for osteoarthrosis therapy. Int J Pharm, 483(1-2):158-168. ![]() [19]Kellgren JH, Lawrence JS, 1957. Radiological assessment of osteo-arthrosis. Ann Rheum Dis, 16(4):494-502. ![]() [20]Kumar SR, Markusic DM, Biswas M, et al., 2016. Clinical development of gene therapy: results and lessons from recent successes. Mol Ther Methods Clin Dev, 3:16034. ![]() [21]Liu K, Chen Z, Luo XW, et al., 2015. Determination of the potential of induced pluripotent stem cells to differentiate into mouse nucleus pulposus cells in vitro. Genet Mol Res, 14(4):12394-12405. ![]() [22]Lu HD, Zhao HQ, Wang K, et al., 2011. Novel hyaluronic acid-chitosan nanoparticles as non-viral gene delivery vectors targeting osteoarthritis. Int J Pharm, 420(2):358-365. ![]() [23]Lu HD, Dai YH, Lv LL, et al., 2014. Chitosan-graft-polyethylenimine/DNA nanoparticles as novel non-viral gene delivery vectors targeting osteoarthritis. PLoS ONE, 9(1):e84703. ![]() [24]Lukashev AN, Zamyatnin AA Jr, 2016. Viral vectors for gene therapy: current state and clinical perspectives. Biochemistry (Mosc), 81(7):700-708. ![]() [25]Luo XW, Liu K, Chen Z, et al., 2016. Adenovirus-mediated GDF-5 promotes the extracellular matrix expression in degenerative nucleus pulposus cells. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 17(1):30-42. ![]() [26]Madry H, Cucchiarini M, 2016. Gene therapy for human osteoarthritis: principles and clinical translation. Expert Opin Biol Ther, 16(3):331-346. ![]() [27]Majzoub RN, Ewert KK, Safinya CR, 2016. Cationic liposome-nucleic acid nanoparticle assemblies with applications in gene delivery and gene silencing. Philos Trans A Math Phys Eng Sci, 374(2072):20150129. ![]() [28]McAlindon TE, Driban JB, Lo GH, 2012. Osteoarthritis year 2011 in review: clinical. Osteoarthritis Cartilage, 20(3):197-200. ![]() [29]Murphy MK, Huey DJ, Hu JC, et al., 2015. TGF-β1, GDF-5, and BMP-2 stimulation induces chondrogenesis in expanded human articular chondrocytes and marrow-derived stromal cells. Stem Cells, 33(3):762-773. ![]() [30]Piera-Velazquez S, Jimenez SA, Stokes DG, 2002. Increased life span of human osteoarthritic chondrocytes by exogenous expression of telomerase. Arthrit Rheum, 46(3):683-693. ![]() [31]Ramesh Kumar D, Saravana Kumar P, Gandhi MR, et al., 2016. Delivery of chitosan/dsRNA nanoparticles for silencing of wing development vestigial (vg) gene in Aedes aegypti mosquitoes. Int J Biol Macromol, 86:89-95. ![]() [32]Robinson WH, Lepus CM, Wang Q, et al., 2016. Low-grade inflammation as a key mediator of the pathogenesis of osteoarthritis. Nat Rev Rheumatol, 12(10):580-592. ![]() [33]van den Borne MPJ, Raijmakers NJH, Vanlauwe J, et al., 2007. International Cartilage Repair Society (ICRS) and Oswestry macroscopic cartilage evaluation scores validated for use in Autologous Chondrocyte Implantation (ACI) and microfracture. Osteoarthritis Cartilage, 15(12):1397-1402. ![]() [34]Vinatier C, Merceron C, Guicheux J, 2016. Osteoarthritis: from pathogenic mechanisms and recent clinical developments to novel prospective therapeutic options. Drug Discov Today, 21(12):1932-1937. ![]() [35]Zhang XQ, Zhang H, Yin LQ, et al., 2016. A pH-sensitive nanosystem based on carboxymethyl chitosan for tumor-targeted delivery of daunorubicin. J Biomed Nanotechnol, 12(8):1688-1698. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>