CLC number:
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 0000-00-00
Cited: 0
Clicked: 5846
Citations: Bibtex RefMan EndNote GB/T7714
Xingchi KAN, Yingsheng CHEN, Bingxu HUANG, Shoupeng FU, Wenjin GUO, Xin RAN, Yu CAO, Dianwen XU, Ji CHENG, Zhanqing YANG, Yanling XU. @article{title=" %0 Journal Article TY - JOUR
掌叶防己碱通过抑制Akt/NF-κB信号通路的激活来缓解脂多糖诱导的急性肺损伤创新点:(1)利用分子生物学技术预测出掌叶防己碱与蛋白激酶B(Akt)的氨基酸残基苏氨酸(THR-51)之间存在氢键作用;(2)确证掌叶防己碱在LPS诱导的急性肺损伤中具有抗炎作用,有助于全面认识掌叶防己碱的生物学功能;(3)为临床缓解急性肺损伤提供潜在的有效药物,作为一种天然抗炎症药物在急性肺损伤临床的应用提供理论依据。 方法:采用蛋白质印迹法(western blot)和实时荧光定量聚合酶链式反应(qRT-PCR)检测炎症基因和炎症蛋白在体内外的转录和翻译;使用免疫荧光法检测促炎转录因子核因子κB(NF-κB)P65转位进入细胞核程度;利用分子对接的方法模拟预测掌叶防己碱与Akt蛋白是否存在氢键作用。 结论:研究结果表明,掌叶防己碱预处理能显著抑制LPS诱导的体内外炎症细胞因子白细胞介素IL-1β的表达和分泌,显著降低促炎性蛋白酶诱导型一氧化氮合酶(iNOS)的蛋白水平。机制研究结果进一步表明,掌叶防己碱能显著抑制LPS诱导的急性肺损伤模型和LPS诱导的小鼠单核巨噬细胞(RAW264.7)细胞的Akt/NF-κB信号通路的激活。通过分子动力学模拟,我们观察到掌叶防己碱与Akt之间存在的氢键作用,有效地抑制了Akt的生物活性。综上所述,掌叶防己碱通过抑制Akt/NF-κB信号通路的激活有效地缓解了LPS诱导的急性肺损伤。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]BellinganGJ, 2002. The pulmonary physician in critical care ![]() [2]BrielM, MeadeM, MercatA, et al., 2010. Higher vs lower positive end-expiratory pressure in patients with acute lung injury and acute respiratory distress syndrome: systematic review and meta-analysis. JAMA, 303(9):865-873. ![]() [3]BuccellettiF, MazzoneM, PortaleG, et al., 2003. Humoral and cellular inflammatory mediators in acute lung injury: friends or enemies? Minerva Med, 94(3):157-165. ![]() [4]ChauhanPS, SinghDK, DashD, et al., 2018. Intranasal curcumin regulates chronic asthma in mice by modulating NF-κB activation and MAPK signaling. Phytomedicine, 51:29-38. ![]() [5]DengJW, YangQ, CaiXP, et al., 2020. Early use of dexamethasone increases Nr4a1 in Kupffer cells ameliorating acute liver failure in mice in a glucocorticoid receptor-dependent manner. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 21(9):727-739. ![]() [6]FuSP, WangJF, XueWJ, et al., 2015. Anti-inflammatory effects of BHBA in both in vivo and in vitro Parkinson's disease models are mediated by GPR109A-dependent mechanisms. J Neuroinflammation, 12:9. ![]() [7]GandhirajanRK, MengS, ChandramoorthyHC, et al., 2013. Blockade of NOX2 and STIM1 signaling limits lipopolysaccharide-induced vascular inflammation. J Clin Invest, 123(2):887-902. ![]() [8]GaoY, XiaoXS, ZhangCL, et al., 2017. Melatonin synergizes the chemotherapeutic effect of 5-fluorouracil in colon cancer by suppressing PI3K/AKT and NF-κB/iNOS signaling pathways. J Pineal Res, 62(2):e12380. ![]() [9]GoodmanRB, PuginJ, LeeJS, et al., 2003. Cytokine-mediated inflammation in acute lung injury. Cytokine Growth Factor Rev, 14(6):523-535. ![]() [10]GuoWJ, LiuBR, HuGQ, et al., 2019. Vanillin protects the blood-milk barrier and inhibits the inflammatory response in LPS-induced mastitis in mice. Toxicol Appl Pharmacol, 365:9-18. ![]() [11]HeM, IchinoseT, SongY, et al., 2016. Desert dust induces TLR signaling to trigger Th2-dominant lung allergic inflammation via a MyD88-dependent signaling pathway. Toxicol Appl Pharmacol, 296:61-72. ![]() [12]HouW, HuSY, SuZZ, et al., 2018. Myricetin attenuates LPS-induced inflammation in RAW 264.7 macrophages and mouse models. Future Med Chem, 10(19):2253-2264. ![]() [13]JeonJ, LeeY, YuH, et al., 2020. HSP70-homolog DnaK of Pseudomonas aeruginosa increases the production of IL-27 through expression of EBI3 via TLR4-dependent NF-κB and TLR4-independent Akt signaling. Int J Mol Sci, 21(23):9194. ![]() [14]JinMY, FengHH, WangY, et al., 2020. Gentiopicroside ameliorates oxidative stress and lipid accumulation through nuclear factor erythroid 2-related factor 2 activation. Oxid Med Cell Longev, 2020:2940746. ![]() [15]KanXC, LiuBR, GuoWJ, et al., 2019. Myricetin relieves LPS-induced mastitis by inhibiting inflammatory response and repairing the blood-milk barrier. J Cell Physiol, 234(9):16252-16262. ![]() [16]LiuS, ZhangJ, ZhouYL, et al., 2019. Pterostilbene restores carbapenem susceptibility in New Delhi metallo-β-lactamase-producing isolates by inhibiting the activity of New Delhi metallo-β-lactamases. Br J Pharmacol, 176(23):4548-4557. ![]() [17]LvHM, LiuQM, WenZM, et al., 2017. Xanthohumol ameliorates lipopolysaccharide (LPS)-induced acute lung injury via induction of AMPK/GSK3β-Nrf2 signal axis. Redox Biol, 12:311-324. ![]() [18]MaiCT, WuMM, WangCL, et al., 2019. Palmatine attenuated dextran sulfate sodium (DSS)-induced colitis via promoting mitophagy-mediated NLRP3 inflammasome inactivation. Mol Immunol, 105:76-85. ![]() [19]MeiSH, McCarterSD, DengYP, et al., 2007. Prevention of LPS-induced acute lung injury in mice by mesenchymal stem cells overexpressing angiopoietin 1. PLoS Med, 4(9):e269. ![]() [20]MetzC, SibbaldWJ, 1991. Anti-inflammatory therapy for acute lung injury: a review of animal and clinical studies. Chest J, 100(4):1110-1119. ![]() [21]NennigSE, SchankJR, 2017. The role of NFkB in drug addiction: beyond inflammation. Alcohol Alcohol, 52(2):172-179. ![]() [22]NingK, GuanZB, LuHT, et al., 2020. Lung macrophages are involved in lung injury secondary to repetitive diving. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 21(8):646-656. ![]() [23]PatelA, KhandeH, PeriasamyH, et al., 2020. Immunomodulatory effect of doxycycline ameliorates systemic and pulmonary inflammation in a murine polymicrobial sepsis model. Inflammation, 43(3):1035-1043. ![]() [24]PedrazzaL, CunhaAA, LuftC, et al., 2017. Mesenchymal stem cells improves survival in LPS-induced acute lung injury acting through inhibition of NETs formation. J Cell Physiol, 232(12):3552-3564. ![]() [25]SangarajuR, NalbanN, AlavalaS, et al., 2019. Protective effect of galangin against dextran sulfate sodium (DSS)-induced ulcerative colitis in Balb/c mice. Inflamm Res, 68(8):691-704. ![]() [26]SlomianyBL, SlomianyA, 2017. Role of LPS-elicited signaling in triggering gastric mucosal inflammatory responses to H. pylori: modulatory effect of ghrelin. Inflammopharmacology, 25(4):415-429. ![]() [27]SongCY, XuYG, LuYQ, 2020. Use of Tripterygium wilfordii Hook F for immune-mediated inflammatory diseases: progress and future prospects. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 21(4):280-290. ![]() [28]SongYD, WuYX, LiXZ, et al., 2018. Protostemonine attenuates alternatively activated macrophage and DRA-induced asthmatic inflammation. Biochem Pharmacol, 155:198-206. ![]() [29]SoniS, WilsonMR, O'DeaKP, et al., 2016. Alveolar macrophage-derived microvesicles mediate acute lung injury. Thorax, 71(11):1020-1029. ![]() [30]TangJ, XuLQ, ZengYW, et al., 2021. Effect of gut microbiota on LPS-induced acute lung injury by regulating the TLR4/NF-κB signaling pathway. Int Immunopharmacol, 91:107272. ![]() [31]The National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network, 2006. Pulmonary-artery versus central venous catheter to guide treatment of acute lung injury. N Engl J Med, 354(21):2213-2224. ![]() [32]TsushimaK, KingLS, AggarwalNR, et al., 2009. Acute lung injury review. Intern Med, 48(9):621-630. ![]() [33]XiangYN, GuoZM, ZhuPF, et al., 2019. Traditional Chinese medicine as a cancer treatment: modern perspectives of ancient but advanced science. Cancer Med, 8(5):1958-1975. ![]() [34]YanBQ, WangDS, DongSW, et al., 2017. Palmatine inhibits TRIF-dependent NF-κB pathway against inflammation induced by LPS in goat endometrial epithelial cells. Int Immunopharmacol, 45:194-200. ![]() [35]YeZH, NingK, AnderBP, et al., 2020. Therapeutic effect of methane and its mechanism in disease treatment. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 21(8):593-602. ![]() [36]YiL, ZhouZD, ZhengYJ, et al., 2019. Suppressive effects of GSS on lipopolysaccharide-induced endothelial cell injury and ALI via TNF-αand IL-6. Mediat Inflamm, 2019:4251394. ![]() [37]YuML, QiBQ, WuXX, et al., 2017. Baicalein increases cisplatin sensitivity of A549 lung adenocarcinoma cells via PI3K/Akt/NF-κB pathway. Biomed Pharmacother, 90:677-685. ![]() [38]ZeytunA, ChaudharyA, PardingtonP, et al., 2010. Induction of cytokines and chemokines by Toll-like receptor signaling: strategies for control of infammation. Crit Rev Immunol, 30(1):53-67. ![]() [39]ZhangH, WuZM, YangYP, et al., 2019. Catalpol ameliorates LPS-induced endometritis by inhibiting inflammation and TLR4/NF-κB signaling. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 20(10):816-827. ![]() [40]ZhaoK, YangCX, LiP, et al., 2020. Epigenetic role of N6-methyladenosine (m6A) RNA methylation in the cardiovascular system. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 21(7):509-523. ![]() [41]ZhengWH, ChenCH, ZhangCX, et al., 2018. The protective effect of phloretin in osteoarthritis: an in vitro and in vivo study. Food Funct, 9(1):263-278. ![]() [42]ZilberbergMD, EpsteinSK, 1998. Acute lung injury in the medical ICU: comorbid conditions, age, etiology, and hospital outcome. Am J Respir Crit Care Med, 157(4 Pt 1):1159-1164. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>