CLC number:
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2022-09-16
Cited: 0
Clicked: 3785
Citations: Bibtex RefMan EndNote GB/T7714
Xiajing LI, Yiyu ZHANG, Ning WANG, Zhaohu YUAN, Xiaojie CHEN, Qicong CHEN, Hui DENG, Xinxin TONG, Honglin CHEN, Yuyou DUAN, Yaming WEI. CircRNA.0007127 triggers apoptosis through the miR-513a-5p/CASP8 axis in K-562 cells[J]. Journal of Zhejiang University Science B,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.B2200048 @article{title="CircRNA.0007127 triggers apoptosis through the miR-513a-5p/CASP8 axis in K-562 cells", %0 Journal Article TY - JOUR
CircRNA.0007127通过miR-513a-5p/CASP8轴触发K-562细胞凋亡1华南理工大学医学院,中国广州市,510000 2华南理工大学附属第二医院输血科,中国广州市,510000 3广东省精准输血工程研究中心,中国广州市,510000 4深圳龙华中心医院输血科,中国深圳,518000 5华南理工大学医学院生命科学研究院干细胞与转化医学实验室,中国广州市,510000 6华南理工大学广州国际校区生物医学科学与工程学院,中国广州市,510000 目的:探讨CCR4-NOT复合物亚基2基因(CNOT2)来源的环状RNA circRNA.0007127在凋亡通路中的作用。 创新点:本研究发现,circRNA.0007127与K-562细胞凋亡相关,可能是一个预测K-562细胞凋亡的分子标志物。并首次证实了细胞凋亡中circRNA.0007127/miR-513a-5p/CASP8的调控轴。 方法:使用miRanda、TargetScan和RNAhybrid软件对circRNA.0007127的靶微小RNA(miRNA)进行预测,筛选具有凋亡相关基因结合位点的miRNA。在H2O2诱导的K-562细胞中,通过定量聚合酶链反应、流式细胞术、线粒体膜电位、免疫荧光、蛋白印迹和胱天蛋白酶8(CASP8)蛋白活性实验来对circRNA.0007127及其下游靶点miR-513a-5p进行体外验证。circRNA.0007127-miR-513a-5p以及CASP8-miR-513a-5p的相互作用分别通过荧光素酶报告基因检测得到验证。 结果:沉默circRNA.0007127通过抑制CASP8通路激活降低K-562细胞凋亡。与对照组相比,CASP8表达减少2倍,CASP8蛋白43-kD片段显著减少(P<0.05)。荧光素酶报告实验表明,circRNA.0007127可以结合miR-513a-5p或CASP8,差异极显著(P<0.001)。miR-513a-5p过表达抑制K-562细胞中CASP8基因表达水平(4倍)和CASP8蛋白43-kD片段水平(P<0.01)。挽救实验表明,circRNA.0007127 siRNA和miR-513a-5p抑制剂共转染增加CASP8基因表达和凋亡率,提示miR-513a-5p抑制剂是circRNA.0007127的拮抗分子。 结论:CircRNA.0007127通过miR-513a-5p/CASP8轴调控K-562细胞凋亡,可作为K-562细胞新的分子靶点。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]BenetatosL, BenetatouA, VartholomatosG, 2020. Long non-coding RNAs and MYC association in hematological malignancies. Ann Hematol, 99(10):2231-2242. ![]() [2]DaiN, QingY, CunYP, et al., 2018. miR-513a-5p regulates radiosensitivity of osteosarcoma by targeting human apurinic/apyrimidinic endonuclease. Oncotarget, 9(39):25414-25426. ![]() [3]de AchaOP, RossiM, GorospeM, 2020. Circular RNAs in blood malignancies. Front Mol Biosci, 7:109. ![]() [4]de BiasiS, GibelliniL, CossarizzaA, 2015. Uncompensated polychromatic analysis of mitochondrial membrane potential using JC-1 and multilaser excitation. Curr Protoc Cytom, 72:1-11. ![]() [5]DroinN, GuéryL, BenikhlefN, et al., 2013. Targeting apoptosis proteins in hematological malignancies. Cancer Lett, 332(2):325-334. ![]() [6]DuJ, ZhangLY, MaHZ, et al., 2020. Lidocaine suppresses cell proliferation and aerobic glycolysis by regulating circHOMER1/miR-138-5p/HEY1 axis in colorectal cancer. Cancer Manag Res, 12:5009-5022. ![]() [7]DubeyM, NagarkotiS, AwasthiD, et al., 2016. Nitric oxide-mediated apoptosis of neutrophils through caspase-8 and caspase-3-dependent mechanism. Cell Death Dis, 7(9):e2348. ![]() [8]GaoSJ, YuYY, LiuL, et al., 2019. Circular RNA hsa_circ_0007059 restrains proliferation and epithelial-mesenchymal transition in lung cancer cells via inhibiting microRNA-378. Life Sci, 233:116692. ![]() [9]GriloAL, MantalarisA, 2019. Apoptosis: a mammalian cell bioprocessing perspective. Biotechnol Adv, 37(3):459-475. ![]() [10]GuarnerioJ, BezziM, JeongJC, et al., 2016. Oncogenic role of fusion-circRNAs derived from cancer-associated chromosomal translocations. Cell, 165(2):289-302. ![]() [11]HaoZ, HuS, LiuZ, et al., 2019. Circular RNAs: functions and prospects in glioma. J Mol Neurosci, 67(1):72-81. ![]() [12]HuangY, ZhangP, DuL, et al., 2018. Mechanisms of recombinant adenovirus-mediated SD-HA fusion protein proliferation inhibition and induced apoptosis of K562 cells. Chin J Hematol, 39(4):314-319 (in Chinese). ![]() [13]HungYC, PanTL, HuWL, 2016. Roles of reactive oxygen species in anticancer therapy with Salvia miltiorrhiza Bunge. Oxid Med Cell Longev, 2016:5293284. ![]() [14]ItoK, InoueT, YokoyamaK, et al., 2011. CNOT2 depletion disrupts and inhibits the CCR4-NOT deadenylase complex and induces apoptotic cell death. Genes Cells, 16(4):368-379. ![]() [15]JamalM, SongTB, ChenB, et al., 2019. Recent progress on circular RNA research in acute myeloid leukemia. Front Oncol, 9:1108. ![]() [16]JungJH, ParkJE, SimDY, et al., 2019. Farnesiferol C induces apoptosis in chronic myelogenous leukemia cells as an imatinib sensitizer via caspase activation and HDAC (histone deacetylase) inactivation. Int J Mol Sci, 20(22):5535. ![]() [17]JungJH, LeeHJ, KimJH, et al., 2020. Colocalization of MID1IP1 and c-Myc is critically involved in liver cancer growth via regulation of ribosomal protein L5 and L11 and CNOT2. Cells, 9(4):985. ![]() [18]KellerN, OzmadenciD, IchimG, et al., 2018. Caspase-8 function, and phosphorylation, in cell migration. Semin Cell Dev Biol, 82:105-117. ![]() [19]KerrJFR, WyllieAH, CurrieAR, 1972. Apoptosis: a basic biological phenomenon with wideranging implications in tissue kinetics. Br J Cancer, 26(4):239-257. ![]() [20]KristensenLS, AndersenMS, StagstedLVW, et al., 2019. The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet, 20(11):675-691. ![]() [21]LeeJ, JungJH, HwangJ, et al., 2019. CNOT2 is critically involved in atorvastatin induced apoptotic and autophagic cell death in non-small cell lung cancers. Cancers (Basel), 11(10):1470. ![]() [22]LitwińskaZ, MachalińskiB, 2017. miRNAs in chronic myeloid leukemia: small molecules, essential function. Leuk Lymphoma, 58(6):1297-1305. ![]() [23]LuMD, LiuD, LiYX, 2020. LINC01436 promotes the progression of gastric cancer via regulating miR-513a-5p/APE1 axis. Onco Targets Ther, 13:10607-10619. ![]() [24]MandalR, BarrónJC, KostovaI, et al., 2020. Caspase-8: the double-edged sword. Biochim Biophys Acta Rev Cancer, 1873(2):188357. ![]() [25]MarcondesNA, TerraSR, LastaCS, et al., 2019. Comparison of JC-1 and mitotracker probes for mitochondrial viability assessment in stored canine platelet concentrates: a flow cytometry study. Cytometry A, 95(2):214-218. ![]() [26]MatsumotoT, JimiS, MigitaK, et al., 2019. FF-10501 induces caspase-8-mediated apoptotic and endoplasmic reticulum stress-mediated necrotic cell death in hematological malignant cells. Int J Hematol, 110(5):606-617. ![]() [27]MeiM, WangYJ, LiZM, et al., 2019. Role of circular RNA in hematological malignancies (Review). Oncol Lett, 18(5):4385-4392. ![]() [28]MemczakS, JensM, ElefsiniotiA, et al., 2013. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature, 495(7441):333-338. ![]() [29]MutiP, DonzelliS, SacconiA, et al., 2018. MiRNA-513a-5p inhibits progesterone receptor expression and constitutes a risk factor for breast cancer: the hOrmone and Diet in the ETiology of breast cancer prospective study. Carcinogenesis, 39(2):98-108. ![]() [30]ObengE, 2021. Apoptosis (programmed cell death) and its signals‒a review. Braz J Biol, 81(4):1133-1143. ![]() [31]PanniS, LoveringRC, PorrasP, et al., 2020. Non-coding RNA regulatory networks. Biochim Biophys Acta Gene Regul Mech, 1863(6):194417. ![]() [32]PerelmanA, WachtelC, CohenM, et al., 2012. JC-1: alternative excitation wavelengths facilitate mitochondrial membrane potential cytometry. Cell Death Dis, 3(11):e430. ![]() [33]Rodriguez-GilA, RitterO, HornungJ, et al., 2016. HIPK family kinases bind and regulate the function of the CCR4-NOT complex. Mol Biol Cell, 27(12):1969-1980. ![]() [34]SalzmanJ, ChenRE, OlsenMN, et al., 2013. Cell-type specific features of circular RNA expression. PLoS Genet, 9(9):e1003777. ![]() [35]SlackFJ, ChinnaiyanAM, 2019. The role of non-coding RNAs in oncology. Cell, 179(5):1033-1055. ![]() [36]SongS, LeeJY, ErmolenkoL, et al., 2020. Tetrahydrobenzimidazole TMQ0153 triggers apoptosis, autophagy and necroptosis crosstalk in chronic myeloid leukemia. Cell Death Dis, 11(2):109. ![]() [37]ŠrámekJ, Němcová-FürstováV, KovářJ, 2021. Molecular mechanisms of apoptosis induction and its regulation by fatty acids in pancreatic β-cells. Int J Mol Sci, 22(8):4285. ![]() [38]SuW, SunS, WangF, et al., 2019. Circular RNA hsa_circ_0055538 regulates the malignant biological behavior of oral squamous cell carcinoma through the p53/Bcl-2/caspase signaling pathway. J Transl Med, 17:76. ![]() [39]TaylorRC, CullenSP, MartinSJ, 2008. Apoptosis: controlled demolition at the cellular level. Nat Rev Mol Cell Biol, 9(3):231-241. ![]() [40]TummersB, GreenDR, 2017. Caspase-8: regulating life and death. Immunol Rev, 277(1):76-89. ![]() [41]WenN, LvQ, DuZG, 2020. MicroRNAs involved in drug resistance of breast cancer by regulating autophagy. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 21(9):690-702. ![]() [42]XiaoY, MingX, WuJY, 2021. Hsa_circ_0002483 regulates miR-758-3p/MYC axis to promote acute myeloid leukemia progression. Hematol Oncol, 39(2):243-253. ![]() [43]XuJ, WuKJ, JiaQJ, et al., 2020. Roles of miRNA and lncRNA in triple-negative breast cancer. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 21(9):673-689. ![]() [44]YuH, LiSB, 2020. Role of LINC00152 in non-small cell lung cancer. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 21(3):179-191. ![]() [45]YuanWB, ZhouR, WangJZ, et al., 2019. Circular RNA Cdr1as sensitizes bladder cancer to cisplatin by upregulating APAF1 expression through miR-1270 inhibition. Mol Oncol, 13(7):1559-1576. ![]() [46]ZhuRY, QiXY, LiuCP, et al., 2020. The silent information regulator 1 pathway attenuates ROS-induced oxidative stress in Alzheimer’s disease. J Integr Neurosci, 19(2):321-332. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>