CLC number:
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2023-07-17
Cited: 0
Clicked: 2004
Citations: Bibtex RefMan EndNote GB/T7714
Luhong SHEN, Yang YANG, Jiuliang ZHANG, Lanjie FENG, Qing ZHOU. Diacylated anthocyanins from purple sweet potato (Ipomoea batatas L.) attenuate hyperglycemia and hyperuricemia in mice induced by a high-fructose/high-fat diet[J]. Journal of Zhejiang University Science B,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.B2200587 @article{title="Diacylated anthocyanins from purple sweet potato (Ipomoea batatas L.) attenuate hyperglycemia and hyperuricemia in mice induced by a high-fructose/high-fat diet", %0 Journal Article TY - JOUR
紫薯双酰基花色苷对高果糖/高脂肪饮食诱导的小鼠高血糖和高尿酸血症的调节作用1华中农业大学食品科学技术学院,中国武汉市,430070 2华中科技大学同济医学院附属武汉市中心医院药学部,中国武汉市,430014 摘要:多数研究已表明针对黄嘌呤氧化酶(XO)可以成为治疗果糖诱导的高尿酸血症和高血糖症的可行方法,然而本研究旨在评估紫薯双酰基花色苷对高果糖/高脂肪饮食诱发的高血糖和高尿酸血症的双重调节作用及其分子机制。试验对小鼠体重、脏器指数、血清生化指标及肝脏抗氧化指标进行检测,并对小鼠肾脏进行病理切片观察。利用实时荧光定量聚合酶链反应检测小鼠肾脏中果糖代谢通路酶的mRNA相对表达量,同时,利用免疫组织化学技术测定小鼠肾脏转运蛋白和炎症因子通路蛋白表达量。研究结果显示:双酰基花色苷可以缓解小鼠的高尿酸血症,这种作用可能与其调节肝脏XO活性、脂质积累和相关的肾脏转运蛋白有关;紫薯双酰基花色苷能够减轻小鼠体重,缓解小鼠脂质代谢紊乱,降低肝脏脂质积累和肝脏氧化应激,从而提高其胰岛素利用率和敏感性,同时能够降低血糖,减少高血糖的发生;此外,双酰基花色苷恢复了与肾脏果糖代谢有关的mRNA水平,并减轻了肾脏损伤和炎症。这项研究为紫薯双酰基花色苷对血糖和尿酸的双重调节机制及其作为功能食品在代谢综合征治疗中的应用提供了实验依据。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]AdnanE, RahmanIA, FaridinHP, 2019. Relationship between insulin resistance, metabolic syndrome components and serum uric acid. Diabetes Metab Syndr Chin Res Rev, 13(3):2158-2162. ![]() [2]AdouniK, ZouaouiO, ChahdouraH, et al., 2018. In vitro antioxidant activity, α-glucosidase inhibitory potential and in vivo protective effect of Asparagus stipularis Forssk aqueous extract against high-fructose diet-induced metabolic syndrome in rats. J Funct Foods, 47:521-530. ![]() [3]Andres-HernandoA, LiNX, CicerchiC, et al., 2017. Protective role of fructokinase blockade in the pathogenesis of acute kidney injury in mice. Nat Commun, 8:14181. ![]() [4]Bars-CortinaD, SakhawatA, Piñol-FelisC, et al., 2022. Chemopreventive effects of anthocyanins on colorectal and breast cancer: a review. Semin Cancer Biol, 81:241-258. ![]() [5]GowdV, KarimN, ShishirMRI, et al., 2019. Dietary polyphenols to combat the metabolic diseases via altering gut microbiota. Trends Food Sci Technol, 93:81-93. ![]() [6]HuQH, ZhangX, PanY, et al., 2012. Allopurinol, quercetin and rutin ameliorate renal NLRP3 inflammasome activation and lipid accumulation in fructose-fed rats. Biochem Pharmacol, 84(1):113-125. ![]() [7]JohnsonRJ, NakagawaT, JalalD, et al., 2013. Uric acid and chronic kidney disease: which is chasing which? Nephrol Dial Transplant, 28(9):2221-2228. ![]() [8]JokiojaJ, LinderborgKM, KortesniemiM, et al., 2020. Anthocyanin-rich extract from purple potatoes decreases postprandial glycemic response and affects inflammation markers in healthy men. Food Chem, 310:125797. ![]() [9]KhicharS, ChoudharyS, SinghVB, et al., 2017. Serum uric acid level as a determinant of the metabolic syndrome: a case control study. Diabetes Metab Syndr Chin Res Rev, 11(1):19-23. ![]() [10]KirakosyanA, GutierrezE, Ramos-SolanoB, et al., 2018. The inhibitory potential of Montmorency tart cherry on key enzymes relevant to type 2 diabetes and cardiovascular disease. Food Chem, 252:142-146. ![]() [11]KrishnanE, PandyaBJ, ChungL, et al., 2012. Hyperuricemia in young adults and risk of insulin resistance, prediabetes, and diabetes: a 15-year follow-up study. Am J Epidemiol, 176(2):108-116. ![]() [12]LuYL, WuYM, ChenXF, et al., 2021. Water extract of shepherd’s purse prevents high-fructose induced-liver injury by regulating glucolipid metabolism and gut microbiota. Food Chem, 342:128536. ![]() [13]LuoCL, ZhouQ, YangZW, et al., 2018. Evaluation of structure and bioprotective activity of key high molecular weight acylated anthocyanin compounds isolated from the purple sweet potato (Ipomoea batatas L. cultivar Eshu No.8). Food Chem, 241:23-31. ![]() [14]MaH, HeK, ZhuJW, et al., 2019. The anti-hyperglycemia effects of Rhizoma Coptidis alkaloids: a systematic review of modern pharmacological studies of the traditional herbal medicine. Fitoterapia, 134:210-220. ![]() [15]MasaroneM, RosatoV, DallioM, et al., 2018. Role of oxidative stress in pathophysiology of nonalcoholic fatty liver disease. Oxid Med Cell Longev, 2018:9547613. ![]() [16]NakagawaT, JohnsonRJ, Andres-HernandoA, et al., 2020. Fructose production and metabolism in the kidney. J Am Soc Nephrol, 31(5):898-906. ![]() [17]NgHY, LeeCT, LeungFF, et al., 2020. Effects of xanthine oxidase inhibitors and dapagliflozin on renal glucose and urate transporters in metabolic syndrome. Nephrol Dial Transpl, 35(S3):P0964. ![]() [18]NishikawaT, NagataN, ShimakamiT, et al., 2020. Xanthine oxidase inhibition attenuates insulin resistance and diet-induced steatohepatitis in mice. Sci Rep, 10:815. ![]() [19]Reagan-ShawS, NihalM, AhmadN, 2008. Dose translation from animal to human studies revisited. FASEB J, 22(3):659-661. ![]() [20]SeoKH, YokoyamaW, KimH, 2020. Comparison of polyphenol-rich wine grape seed flour-regulated fecal and blood microRNAs in high-fat, high-fructose diet-induced obese mice. J Funct Foods, 73:104147. ![]() [21]SpínolaV, Llorent-MartínezEJ, CastilhoPC, 2019. Polyphenols of Myrica faya inhibit key enzymes linked to type II diabetes and obesity and formation of advanced glycation end-products (in vitro): potential role in the prevention of diabetic complications. Food Res Int, 116:1229-1238. ![]() [22]ThongnakL, ChatsudthipongV, LungkaphinA, 2020. Mitigation of renal inflammation and endoplasmic reticulum stress by vildagliptin and statins in high-fat high-fructose diet-induced insulin resistance and renal injury in rats. Biochim Biophys Acta Mol Cell Biol Lipids, 1865(9):158755. ![]() [23]van HungT, WanatanbeJ, YonejimaY, et al., 2019. Exopolysaccharides from Leuconostoc mesenteroides attenuate chronic kidney disease in mice by protecting the intestinal barrier. J Funct Foods, 52:276-283. ![]() [24]VilàL, RebolloA, AđalsteissonGS, et al., 2011. Reduction of liver fructokinase expression and improved hepatic inflammation and metabolism in liquid fructose-fed rats after atorvastatin treatment. Toxicol Appl Pharmacol, 251(1):32-40. ![]() [25]WangL, ZhaoY, ZhouQ, et al., 2017. Characterization and hepatoprotective activity of anthocyanins from purple sweet potato (Ipomoea batatas L. cultivar Eshu No. 8). J Food Drug Anal, 25(3):607-618. ![]() [26]WangMX, LiuYL, YangY, et al., 2015. Nuciferine restores potassium oxonate-induced hyperuricemia and kidney inflammation in mice. Eur J Pharmacol, 747:59-70. ![]() [27]WangYJ, ZhengYL, LuJ, et al., 2010. Purple sweet potato color suppresses lipopolysaccharide-induced acute inflammatory response in mouse brain. Neurochem Int, 56(3):424-430. ![]() [28]YangY, ZhangZC, ZhouQ, et al., 2020a. Hypouricemic effect in hyperuricemic mice and xanthine oxidase inhibitory mechanism of dietary anthocyanins from purple sweet potato (Ipomoea batatas L.). J Funct Foods, 73:104151. ![]() [29]YangY, ZhangJL, ZhouQ, 2020b. Targets and mechanisms of dietary anthocyanins to combat hyperglycemia and hyperuricemia: a comprehensive review. Crit Rev Food Sci Nutr, 62(4):1119-1143. ![]() [30]ZhangJT, SunLJ, DongYS, et al., 2019. Chemical compos ![]() [31]itions and α-glucosidase inhibitory effects of anthocyanidins from blueberry, blackcurrant and blue honeysuckle fruits. Food Chem, 299:125102. ![]() [32]ZhangQY, PanY, WangR, et al., 2014. Quercetin inhibits AMPK/TXNIP activation and reduces inflammatory lesions to improve insulin signaling defect in the hypothalamus of high fructose-fed rats. J Nutr Biochem, 25(4):420-428. ![]() [33]ZhangZC, SuGH, LuoCL, et al., 2015. Effects of anthocyanins from purple sweet potato (Ipomoea batatas L. cultivar Eshu No.8) on the serum uric acid level and xanthine oxidase activity in hyperuricemic mice. Food Funct, 6(9):3045-3055. ![]() [34]ZhangZC, ZhouQ, YangY, et al., 2019. Highly acylated anthocyanins from purple sweet potato (Ipomoea batatas L.) alleviate hyperuricemia and kidney inflammation in hyperuricemic mice: possible attenuation effects on allopurinol. J Agric Food Chem, 67(22):6202-6211. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>