Full Text:  <648>

CLC number: 

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 0000-00-00

Cited: 0

Clicked: 1032

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B

Accepted manuscript available online (unedited version)


Comparative study of bladder augmentation using PLLA-based biomimetic scaffolds: electrospun nanofiber vs. extracellular matrix scaffold with adipose-derived stem cells


Author(s):  Xuesheng WANG, Dezhi ZHOU, Liliang OUYANG, Fan ZHANG, Xu TAO, Limin LIAO

Affiliation(s):  Department of Urology, China Rehabilitation Research Center, School of Rehabilitation of Capital Medical University, Beijing 100068, China; more

Corresponding email(s):  lmliao@126.com, xut@tsinghua-sz.org

Key Words:  Bladder augmentation and reconstruction; Tissue engineering; Adipose-derived stem cells; Nanofiber scaffolds; Small intestinal submucosa 1 Introduction


Share this article to: More <<< Previous Paper|Next Paper >>>

Xuesheng WANG, Dezhi ZHOU, Liliang OUYANG, Fan ZHANG, Xu TAO,Limin LIAO. Comparative study of bladder augmentation using PLLA-based biomimetic scaffolds: electrospun nanofiber vs. extracellular matrix scaffold with adipose-derived stem cells[J]. Journal of Zhejiang University Science B,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.B2300275

@article{title="Comparative study of bladder augmentation using PLLA-based biomimetic scaffolds: electrospun nanofiber vs. extracellular matrix scaffold with adipose-derived stem cells",
author="Xuesheng WANG, Dezhi ZHOU, Liliang OUYANG, Fan ZHANG, Xu TAO,Limin LIAO",
journal="Journal of Zhejiang University Science B",
year="in press",
publisher="Zhejiang University Press & Springer",
doi="https://doi.org/10.1631/jzus.B2300275"
}

%0 Journal Article
%T Comparative study of bladder augmentation using PLLA-based biomimetic scaffolds: electrospun nanofiber vs. extracellular matrix scaffold with adipose-derived stem cells
%A Xuesheng WANG
%A Dezhi ZHOU
%A Liliang OUYANG
%A Fan ZHANG
%A Xu TAO
%A Limin LIAO
%J Journal of Zhejiang University SCIENCE B
%P
%@ 1673-1581
%D in press
%I Zhejiang University Press & Springer
doi="https://doi.org/10.1631/jzus.B2300275"

TY - JOUR
T1 - Comparative study of bladder augmentation using PLLA-based biomimetic scaffolds: electrospun nanofiber vs. extracellular matrix scaffold with adipose-derived stem cells
A1 - Xuesheng WANG
A1 - Dezhi ZHOU
A1 - Liliang OUYANG
A1 - Fan ZHANG
A1 - Xu TAO
A1 - Limin LIAO
J0 - Journal of Zhejiang University Science B
SP -
EP -
%@ 1673-1581
Y1 - in press
PB - Zhejiang University Press & Springer
ER -
doi="https://doi.org/10.1631/jzus.B2300275"


Abstract: 
Bladder augmentation with gastrointestinal segments is a widely used surgical procedure for neurogenic bladder or bladder defects, but it carries a risk of many side effects, including metabolic disturbance, urolithiasis, and even malignancy. Several degradable materials have been used to investigate the regeneration of bladder tissue but few biomaterials have been translated into clinical applications. Moreover, there has been no systematic study of whether biomaterials applied in clinical practice are preferable for bladder tissue regeneration. The aim of this study was to compare the safety and applicability of small intestinal submucosa (SIS), poly(l-lactic) acid (PLLA) nanofibrous scaffold, and PLLA/gelatin composite nanofibrous scaffold as a potential bladder wall substitute material in tissue-engineered bladder augmentation and reconstruction. The results provide a scientific basis for selecting appropriate materials in clinical application. The microstructure, cytocompatibility, cell adhesion and histocompatibility of scaffolds, including SIS, PLLA nanofiber scaffold, and PLLA/gelatin were observed. Furthermore, bladder augmentation rabbit models were constructed using scaffolds with and without adipose-derived stem cell (ASC) implantation. All animals survived the experiment with no complications, and the structural integrity of the implantation site was demonstrated using cystography and urodynamics. Histological and immunohistochemical analyses indicated that the three kinds of scaffold could regenerate the bladder wall structure at 6 and 12 weeks. The animal models of ASC implantation confirmed their positive effect on urothelial maturation, smooth-muscle bundle and blood vessel regeneration, and physiological function restoration. Bladders reconstructed with the ASC-PLLA scaffold showed superior structural and functional properties, with no significant differences in the regenerated urothelium, smooth muscle, or vessels of the ASC-PLLA and control groups. PLLA-based nanofiber scaffolds with proper cell adhesion and growth can be an ideal support scaffold for achieving clinical applications for bladder reconstruction.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE