CLC number:
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2024-03-06
Cited: 0
Clicked: 1454
Hong CAO, Xuchang ZHOU, Bowen XU, Han HU, Jianming GUO, Miao WANG, Nan LI, Jun ZOU. Advances in the study of mitophagy in osteoarthritis[J]. Journal of Zhejiang University Science B,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.B2300402 @article{title="Advances in the study of mitophagy in osteoarthritis", %0 Journal Article TY - JOUR
线粒体自噬调控骨关节炎的最新进展1上海体育大学运动健康学院,中国上海市,200438 2海军军医大学免疫与炎症全国重点实验室,中国上海市,200433 3北京体育大学运动医学与康复学院,中国北京市,100084 摘要:骨关节炎是一种以关节内软骨损伤退变、软骨下骨异常重塑、骨赘生成、滑膜炎症反应和广泛血管生成为特征的慢性退行性关节疾病,是全球60岁以上人群最常见的肌肉骨骼疾病。在骨关节炎的发生发展过程中,软骨细胞的异常代谢发挥了重要致病作用。线粒体功能障碍作为软骨细胞代谢异常的重要诱因,参与了骨关节炎的发生和发展。因此,维持线粒体稳态是一种避免骨关节炎发生的重要方式。线粒体自噬是自噬体靶向吞噬损伤线粒体,以清除受损或功能失调的线粒体,维持线粒体稳态的一种方式。越来越多的研究发现线粒体自噬与骨关节炎密切相关,这提示线粒体自噬功能的调节可以作为一种治疗骨关节炎的新方法。本文通过对近年来线粒体自噬在骨关节炎中的研究进行综述,进一步阐述了线粒体自噬调控骨关节炎的潜在机制,为线粒体自噬治疗骨关节炎的相关研究提供理论依据。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]AkasakiY, Alvarez-GarciaO, SaitoM, et al., 2014. FoxO transcription factors support oxidative stress resistance in human chondrocytes. Arthritis Rheumatol, 66(12):3349-3358. ![]() [2]Almonte-BecerrilM, Navarro-GarciaF, Gonzalez-RoblesA, et al., 2010. Cell death of chondrocytes is a combination between apoptosis and autophagy during the pathogenesis of osteoarthritis within an experimental model. Apoptosis, 15(5):631-638. ![]() [3]AndingAL, BaehreckeEH, 2017. Cleaning house: selective autophagy of organelles. Dev Cell, 41(1):10-22. ![]() [4]AnsariMY, KhanNM, AhmadI, et al., 2018. Parkin clearance of dysfunctional mitochondria regulates ROS levels and increases survival of human chondrocytes. Osteoarthritis Cartilage, 26(8):1087-1097. ![]() [5]AnsariMY, AhmadN, HaqqiTM, 2020. Oxidative stress and inflammation in osteoarthritis pathogenesis: role of polyphenols. Biomed Pharmacother, 129:110452. ![]() [6]ArraM, SwarnkarG, KeK, et al., 2020. LDHA-mediated ROS generation in chondrocytes is a potential therapeutic target for osteoarthritis. Nat Commun, 11:3427. ![]() [7]BellotG, Garcia-MedinaR, GounonP, et al., 2009. Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains. Mol Cell Biol, 29(10):2570-2581. ![]() [8]BernardiniJP, BrouwerJM, TanIKL, et al., 2019. Parkin inhibits BAK and BAX apoptotic function by distinct mechanisms during mitophagy. EMBO J, 38(2):e99916. ![]() [9]BhujabalZ, BirgisdottirÅB, SjøttemE, et al., 2017. FKBP8 recruits LC3A to mediate parkin-independent mitophagy. EMBO Rep, 18(6):947-961. ![]() [10]BingolB, TeaJS, PhuL, et al., 2014. The mitochondrial deubiquitinase USP30 opposes parkin-mediated mitophagy. Nature, 510(7505):370-375. ![]() [11]BirgisdottirÅB, MouilleronS, BhujabalZ, et al., 2019. Members of the autophagy class III phosphatidylinositol 3-kinase complex I interact with GABARAP and GABARAPL1 via LIR motifs. Autophagy, 15(8):1333-1355. ![]() [12]BlancoFJ, Rego-PérezI, 2018. Mitochondria and mitophagy: biosensors for cartilage degradation and osteoarthritis. Osteoarthritis Cartilage, 26(8):989-991. ![]() [13]BlancoFJ, RegoI, Ruiz-RomeroC, 2011. The role of mitochondria in osteoarthritis. Nat Rev Rheumatol, 7(3):161-169. ![]() [14]BuluaAC, SimonA, MaddipatiR, et al., 2011. Mitochondrial reactive oxygen species promote production of proinflammatory cytokines and are elevated in TNFR1-associated periodic syndrome (TRAPS). J Exp Med, 208(3):519-533. ![]() [15]CaoST, WangCC, YanJT, et al., 2020. Curcumin ameliorates oxidative stress-induced intestinal barrier injury and mitochondrial damage by promoting Parkin dependent mitophagy through AMPK-TFEB signal pathway. Free Radical Biol Med, 147:8-22. ![]() [16]CharlierE, DeroyerC, CiregiaF, et al., 2019. Chondrocyte dedifferentiation and osteoarthritis (OA). Biochem Pharmacol, 165:49-65. ![]() [17]ChenG, HanZ, FengD, et al., 2014. A regulatory signaling loop comprising the PGAM5 phosphatase and CK2 controls receptor-mediated mitophagy. Mol Cell, 54(3):362-377. ![]() [18]ChenM, ChenZH, WangYY, et al., 2016. Mitophagy receptor FUNDC1 regulates mitochondrial dynamics and mitophagy. Autophagy, 12(4):689-702. ![]() [19]CheongH, NairU, GengJF, et al., 2008. The Atg1 kinase complex is involved in the regulation of protein recruitment to initiate sequestering vesicle formation for nonspecific autophagy in Saccharomyces cerevisiae. Mol Biol Cell, 19(2):668-681. ![]() [20]CollinsJA, WoodST, NelsonKJ, et al., 2016. Oxidative stress promotes peroxiredoxin hyperoxidation and attenuates pro-survival signaling in aging chondrocytes. J Biol Chem, 291(13):6641-6654. ![]() [21]CoryellPR, DiekmanBO, LoeserRF, 2021. Mechanisms and therapeutic implications of cellular senescence in osteoarthritis. Nat Rev Rheumatol, 17(1):47-57. ![]() [22]CuervoAM, BergaminiE, BrunkUT, et al., 2005. Autophagy and aging: the importance of maintaining “clean” cells. Autophagy, 1(3):131-140. ![]() [23]CuiAY, LiHZ, WangDW, et al., 2020. Global, regional prevalence, incidence and risk factors of knee osteoarthritis in population-based studies. EClinicalMedicine, 29:100587. ![]() [24]D'AdamoS, CetrulloS, GuidottiS, et al., 2020. Spermidine rescues the deregulated autophagic response to oxidative stress of osteoarthritic chondrocytes. Free Radic Biol Med, 153:159-172. ![]() [25]DaiSH, ChenT, WangYH, et al., 2014. Sirt3 protects cortical neurons against oxidative stress via regulating mitochondrial Ca2+ and mitochondrial biogenesis. Int J Mol Sci, 15(8):14591-14609. ![]() [26]D'AmicoD, OlmerM, FouassierAM, et al., 2022. Urolithin A improves mitochondrial health, reduces cartilage degeneration, and alleviates pain in osteoarthritis. Aging Cell, 21(8):e13662. ![]() [27]DavisJE, PriceLL, LoGH, et al., 2017. A single recent injury is a potent risk factor for the development of accelerated knee osteoarthritis: data from the osteoarthritis initiative. Rheumatol Int, 37(10):1759-1764. ![]() [28]DawsonTM, DawsonVL, 2017. Mitochondrial mechanisms of neuronal cell death: potential therapeutics. Annu Rev Pharmacol Toxicol, 57:437-454. ![]() [29]DengR, WangY, BuYH, et al., 2022. BNIP3 mediates the different adaptive responses of fibroblast-like synovial cells to hypoxia in patients with osteoarthritis and rheumatoid arthritis. Mol Med, 28:64. ![]() [30]DuanR, XieH, LiuZZ, 2020. The role of autophagy in osteoarthritis. Front Cell Dev Biol, 8:608388. ![]() [31]DuanYM, FangHB, 2016. RecQL4 regulates autophagy and apoptosis in U2OS cells. Biochem Cell Biol, 94(6):551-559. ![]() [32]EdgarRS, GreenEW, ZhaoYW, et al., 2012. Peroxiredoxins are conserved markers of circadian rhythms. Nature, 485(7399):459-464. ![]() [33]EganDF, ShackelfordDB, MihaylovaMM, et al., 2011. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science, 331(6016):456-461. ![]() [34]EyreD, 2002. Articular cartilage and changes in Arthritis: collagen of articular cartilage. Arthritis Res Ther, 4:30. ![]() [35]FengXF, PanJY, LiJY, et al., 2020. Metformin attenuates cartilage degeneration in an experimental osteoarthritis model by regulating AMPK/mTOR. Aging (Albany NY), 12(2):1087-1103. ![]() [36]Fernández-MorenoM, Rego-PérezI, BlancoFJ, 2022. Is osteoarthritis a mitochondrial disease? What is the evidence? Curr Opin Rheumatol, 34(1):46-53. ![]() [37]FivensonEM, LautrupS, SunN, et al., 2017. Mitophagy in neurodegeneration and aging. Neurochem Int, 109:202-209. ![]() [38]FriedmanJR, NunnariJ, 2014. Mitochondrial form and function. Nature, 505(7483):335-343. ![]() [39]FuruyaN, KakutaS, SumiyoshiK, et al., 2018. NDP52 interacts with mitochondrial RNA poly(A) polymerase to promote mitophagy. EMBO Rep, 19(12):e46363. ![]() [40]GlickD, BarthS, MacleodKF, 2010. Autophagy: cellular and molecular mechanisms. J Pathol, 221(1):3-12. ![]() [41]Glyn-JonesS, PalmerAJR, AgricolaR, et al., 2015. Osteoarthritis. Lancet, 386(9991):376-387. ![]() [42]HannaRA, QuinsayMN, OrogoAM, et al., 2012. Microtubule-associated protein 1 light chain 3 (LC3) interacts with Bnip3 protein to selectively remove endoplasmic reticulum and mitochondria via autophagy. J Biol Chem, 287(23):19094-19104. ![]() [43]HardieDG, 2014. AMP-activated protein kinase: maintaining energy homeostasis at the cellular and whole-body levels. Annu Rev Nutr, 34:31-55. ![]() [44]HeJ, HeJ, 2023. Baicalin mitigated IL-1β-induced osteoarthritis chondrocytes damage through activating mitophagy. Chem Biol Drug Des, 101(6):1322-1334. ![]() [45]HeYZ, WuZP, XuLH, et al., 2020. The role of SIRT3-mediated mitochondrial homeostasis in osteoarthritis. Cell Mol Life Sci, 77(19):3729-3743. ![]() [46]HerzigS, ShawRJ, 2018. AMPK: guardian of metabolism and mitochondrial homeostasis. Nat Rev Mol Cell Biol, 19(2):121-135. ![]() [47]Higuchi-SanabriaR, FrankinoPA, PaulJW III, et al., 2018. A futile battle? Protein quality control and the stress of aging. Dev Cell, 44(2):139-163. ![]() [48]HuSL, ZhangCW, NiLB, et al., 2020. Stabilization of HIF-1α alleviates osteoarthritis via enhancing mitophagy. Cell Death Dis, 11(6):481. ![]() [49]HuangLW, HuangTC, HuYC, et al., 2020. Zinc protects chondrocytes from monosodium iodoacetate-induced damage by enhancing ATP and mitophagy. Biochem Biophys Res Commun, 521(1):50-56. ![]() [50]HunterW, 1995. Of the structure and disease of articulating cartilages. Clin Orthop Relat Res, (317):3-6. ![]() [51]IbrahimBA, AlenaziFSH, BriskiKP, 2015. Energy status determines hindbrain signal transduction pathway transcriptional reactivity to AMPK in the estradiol-treated ovariectomized female rat. Neuroscience, 284:888-899. ![]() [52]ImhofH, SulzbacherI, GramppS, et al., 2000. Subchondral bone and cartilage disease: a rediscovered functional unit. Invest Radiol, 35(10):581-588. ![]() [53]JiangN, XingBZ, PengR, et al., 2022. Inhibition of Cpt1a alleviates oxidative stress-induced chondrocyte senescence via regulating mitochondrial dysfunction and activating mitophagy. Mech Ageing Dev, 205:111688. ![]() [54]JinZZ, ChangBH, WeiYL, et al., 2022. Curcumin exerts chondroprotective effects against osteoarthritis by promoting AMPK/PINK1/Parkin-mediated mitophagy. Biomed Pharmacother, 151:113092. ![]() [55]JonesDP, 2015. Redox theory of aging. Redox Biol, 5:71-79. ![]() [56]KawamataT, KamadaY, KabeyaY, et al., 2008. Organization of the pre-autophagosomal structure responsible for autophagosome formation. Mol Biol Cell, 19(5):2039-2050. ![]() [57]KerrJS, AdriaanseBA, GreigNH, et al., 2017. Mitophagy and Alzheimer’s disease: cellular and molecular mechanisms. Trends Neurosci, 40(3):151-166. ![]() [58]KiaerT, GrønlundJ, SørensenKH, 1988. Subchondral pO2, pCO2, pressure, pH, and lactate in human osteoarthritis of the hip. Clin Orthop Relat Res, (229):149-155. ![]() [59]KianiC, ChenLW, WuYJ, et al., 2002. Structure and function of aggrecan. Cell Res, 12(1):19-32. ![]() [60]KimC, NevittM, GuermaziA, et al., 2018. Brief report: leg length inequality and hip osteoarthritis in the multicenter osteoarthritis study and the osteoarthritis initiative. Arthritis Rheumatol, 70(10):1572-1576. ![]() [61]KimD, SongJ, JinEJ, 2021. BNIP3-dependent mitophagy via PGC1α promotes cartilage degradation. Cells, 10(7):1839. ![]() [62]KimHA, SuhDI, SongYW, 2001. Relationship between chondrocyte apoptosis and matrix depletion in human articular cartilage. J Rheumatol, 28(9):2038-2045. ![]() [63]KimuraS, NodaT, YoshimoriT, 2008. Dynein-dependent movement of autophagosomes mediates efficient encounters with lysosomes. Cell Struct Funct, 33(1):109-122. ![]() [64]Kop'evaTN, Bel'skaiaOB, AstapenkoMG, et al., 1986. Morphology of articular cartilage in osteoarthrosis. Arkh Patol, 48(12):40-46 (in Russian). ![]() [65]KoyanoF, OkatsuK, KosakoH, et al., 2014. Ubiquitin is phosphorylated by PINK1 to activate parkin. Nature, 510(7503):162-166. ![]() [66]LazarouM, SliterDA, KaneLA, et al., 2015. The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature, 524(7565):309-314. ![]() [67]LeiQY, TanJ, YiSQ, et al., 2018. Mitochonic acid 5 activates the MAPK‒ERK‒yap signaling pathways to protect mouse microglial BV-2 cells against TNFα-induced apoptosis via increased Bnip3-related mitophagy. Cell Mol Biol Lett, 23:14. ![]() [68]LiuD, CaiZJ, YangYT, et al., 2022. Mitochondrial quality control in cartilage damage and osteoarthritis: new insights and potential therapeutic targets. Osteoarthritis Cartilage, 30(3):395-405. ![]() [69]LiuL, FengD, ChenG, et al., 2012. Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells. Nat Cell Biol, 14(2):177-185. ![]() [70]LiuL, ZhangWY, LiuTH, et al., 2023. The physiological metabolite α-ketoglutarate ameliorates osteoarthritis by regulating mitophagy and oxidative stress. Redox Biol, 62:102663. ![]() [71]LombardDB, AltFW, ChengHL, et al., 2007. Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation. Mol Cell Biol, 27(24):8807-8814. ![]() [72]LuJR, PengY, ZouJP, et al., 2021. Hypoxia inducible factor-1α is a regulator of autophagy in osteoarthritic chondrocytes. Cartilage, 13(2_suppl):1030s-1040s. ![]() [73]MaZT, WangDL, WengJ, et al., 2020. BNIP3 decreases the LPS-induced inflammation and apoptosis of chondrocytes by promoting the development of autophagy. J Orthop Surg Res, 15:284. ![]() [74]MaimaitijumaT, YuJH, RenYL, et al., 2020. PHF23 negatively regulates the autophagy of chondrocytes in osteoarthritis. Life Sci, 253:117750. ![]() [75]MatsuhashiT, SatoT, KannoSI, et al., 2017. Mitochonic acid 5 (MA-5) facilitates ATP synthase oligomerization and cell survival in various mitochondrial diseases. eBioMedicine, 20:27-38. ![]() [76]MeiRH, LouP, YouGC, et al., 2021. 17β-Estradiol induces mitophagy upregulation to protect chondrocytes via the SIRT1-mediated AMPK/mTOR signaling pathway. Front Endocrinol (Lausanne), 11:615250. ![]() [77]MiwaS, KashyapS, ChiniE, et al., 2022. Mitochondrial dysfunction in cell senescence and aging. J Clin Invest, 132(13):e158447. ![]() [78]NajafipourH, FerrellWR, 1995. Comparison of synovial PO2 and sympathetic vasoconstrictor responses in normal and acutely inflamed rabbit knee joints. Exp Physiol, 80(2):209-220. ![]() [79]NguyenTN, PadmanBS, LazarouM, 2016. Deciphering the molecular signals of PINK1/Parkin mitophagy. Trends Cell Biol, 26(10):733-744. ![]() [80]NovakI, KirkinV, McEwanDG, et al., 2010. Nix is a selective autophagy receptor for mitochondrial clearance. EMBO Rep, 11(1):45-51. ![]() [81]PaulssonM, HeinegårdD, 1979. Matrix proteins bound to associatively prepared proteoglycans from bovine cartilage. Biochem J, 183(3):539-545. ![]() [82]PedroJMBS, KroemerG, GalluzziL, 2017. Autophagy and mitophagy in cardiovascular disease. Circ Res, 120(11):1812-1824. ![]() [83]PeturssonF, HusaM, JuneR, et al., 2013. Linked decreases in liver kinase B1 and AMP-activated protein kinase activity modulate matrix catabolic responses to biomechanical injury in chondrocytes. Arthritis Res Ther, 15(4):R77. ![]() [84]PfanderD, GelseK, 2007. Hypoxia and osteoarthritis: how chondrocytes survive hypoxic environments. Curr Opin Rheumatol, 19(5):457-462. ![]() [85]QinN, WeiLW, LiWY, et al., 2017. Local intra-articular injection of resveratrol delays cartilage degeneration in C57BL/6 mice by inducing autophagy via AMPK/mTOR pathway. J Pharmacol Sci, 134(3):166-174. ![]() [86]ReedKN, WilsonG, PearsallA, et al., 2014. The role of mitochondrial reactive oxygen species in cartilage matrix destruction. Mol Cell Biochem, 397(1-2):195-201. ![]() [87]RussellEM, MillerRH, UmbergerBR, et al., 2013. Lateral wedges alter mediolateral load distributions at the knee joint in obese individuals. J Orthop Res, 31(5):665-671. ![]() [88]SalucciS, FalcieriE, BattistelliM, 2022. Chondrocyte death involvement in osteoarthritis. Cell Tissue Res, 389(2):159-170. ![]() [89]SarrafSA, RamanM, Guarani-PereiraV, et al., 2013. Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization. Nature, 496(7445):372-376. ![]() [90]Scherz-ShouvalR, ShvetsE, FassE, et al., 2007. Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J, 26(7):1749-1760. ![]() [91]SchulzRM, BaderA, 2007. Cartilage tissue engineering and bioreactor systems for the cultivation and stimulation of chondrocytes. Eur Biophys J, 36(4-5):539-568. ![]() [92]ShangJ, LinN, PengR, et al., 2023. Inhibition of Klf10 attenuates oxidative stress-induced senescence of chondrocytes via modulating mitophagy. Molecules, 28(3):924. ![]() [93]ShinHJ, ParkH, ShinN, et al., 2019. Pink1-mediated chondrocytic mitophagy contributes to cartilage degeneration in osteoarthritis. J Clin Med, 8(11):1849. ![]() [94]SowterHM, RatcliffePJ, WatsonP, et al., 2001. HIF-1-dependent regulation of hypoxic induction of the cell death factors BNIP3 and NIX in human tumors. Cancer Res, 61(18):6669-6673. ![]() [95]StolzA, ErnstA, DikicI, 2014. Cargo recognition and trafficking in selective autophagy. Nat Cell Biol, 16(6):495-501. ![]() [96]SunK, JingXZ, GuoJC, et al., 2021. Mitophagy in degenerative joint diseases. Autophagy, 17(9):2082-2092. ![]() [97]SuzukiK, KirisakoT, KamadaY, et al., 2001. The pre-autophagosomal structure organized by concerted functions of APG genes is essential for autophagosome formation. EMBO J, 20(21):5971-5981. ![]() [98]SuzukiK, AkiokaM, Kondo-KakutaC, et al., 2013. Fine mapping of autophagy-related proteins during autophagosome formation in Saccharomyces cerevisiae. J Cell Sci, 126(Pt 11):2534-2544. ![]() [99]TahrirFG, LangfordD, AminiS, et al., 2019. Mitochondrial quality control in cardiac cells: mechanisms and role in cardiac cell injury and disease. J Cell Physiol, 234(6):8122-8133. ![]() [100]TamrakarP, IbrahimBA, GujarAD, et al., 2015. Estrogen regulates energy metabolic pathway and upstream adenosine 5'-monophosphate-activated protein kinase and phosphatase enzyme expression in dorsal vagal complex metabolosensory neurons during glucostasis and hypoglycemia. J Neurosci Res, 93(2):321-332. ![]() [101]TangQ, ZhengG, FengZH, et al., 2017. Trehalose ameliorates oxidative stress-mediated mitochondrial dysfunction and ER stress via selective autophagy stimulation and autophagic flux restoration in osteoarthritis development. Cell Death Dis, 8(10):e3081. ![]() [102]TianWL, LiW, ChenYQ, et al., 2015. Phosphorylation of ULK1 by AMPK regulates translocation of ULK1 to mitochondria and mitophagy. FEBS Lett, 589(15):1847-1854. ![]() [103]VadalàG, di GiacomoG, AmbrosioL, et al., 2020. Irisin recovers osteoarthritic chondrocytes in vitro. Cells, 9(6):1478. ![]() [104]VinaER, KwohCK, 2018. Epidemiology of osteoarthritis: literature update. Curr Opin Rheumatol, 30(2):160-167. ![]() [105]WangCZ, YangY, ZhangYQ, et al., 2018. Protective effects of metformin against osteoarthritis through upregulation of SIRT3-mediated PINK1/Parkin-dependent mitophagy in primary chondrocytes. BioSci Trends, 12(6):605-612. ![]() [106]WangFS, KuoCW, KoJY, et al., 2020. Irisin mitigates oxidative stress, chondrocyte dysfunction and osteoarthritis development through regulating mitochondrial integrity and autophagy. Antioxidants (Basel), 9(9):810. ![]() [107]WangJL, WangK, HuangCA, et al., 2018. SIRT3 activation by dihydromyricetin suppresses chondrocytes degeneration via maintaining mitochondrial homeostasis. Int J Biol Sci, 14(13):1873-1882. ![]() [108]WangS, DengZT, MaYC, et al., 2020. The role of autophagy and mitophagy in bone metabolic disorders. Int J Biol Sci, 16(14):2675-2691. ![]() [109]WangWF, LiuSY, QiZF, et al., 2020. MiR-145 targeting BNIP3 reduces apoptosis of chondrocytes in osteoarthritis through notch signaling pathway. Eur Rev Med Pharmacol Sci, 24(16):8263-8272. ![]() [110]WangYQ, SerricchioM, JaureguiM, et al., 2015. Deubiquitinating enzymes regulate PARK2-mediated mitophagy. Autophagy, 11(4):595-606. ![]() [111]WilliamsJA, ZhaoK, JinSK, et al., 2017. New methods for monitoring mitochondrial biogenesis and mitophagy in vitro and in vivo. Exp Biol Med (Maywood), 242(8):781-787. ![]() [112]WuLH, LiuHQ, LiLF, et al., 2014. Mitochondrial pathology in osteoarthritic chondrocytes. Curr Drug Targets, 15(7):710-719. ![]() [113]WuWX, TianWL, HuZ, et al., 2014. ULK1 translocates to mitochondria and phosphorylates FUNDC1 to regulate mitophagy. EMBO Rep, 15(5):566-575. ![]() [114]XianHX, WatariK, Sanchez-LopezE, et al., 2022. Oxidized DNA fragments exit mitochondria via mPTP- and VDAC-dependent channels to activate NLRP3 inflammasome and interferon signaling. Immunity, 55(8):1370-1385.e8. ![]() [115]XinRB, XuYY, LongDB, et al., 2022. Mitochonic acid-5 inhibits reactive oxygen species production and improves human chondrocyte survival by upregulating SIRT3-mediated, Parkin-dependent mitophagy. Front Pharmacol, 13:911716. ![]() [116]XuL, WuZ, HeY, et al., 2020. MFN2 contributes to metabolic disorders and inflammation in the aging of rat chondrocytes and osteoarthritis. Osteoarthritis Cartilage, 28(8):1079-1091. ![]() [117]XuWN, YangRZ, ZhengHL, et al., 2019. PGC-1α acts as an mediator of Sirtuin2 to protect annulus fibrosus from apoptosis induced by oxidative stress through restraining mitophagy. Int J Biol Macromol, 136:1007-1017. ![]() [118]YamamotoH, FujiokaY, SuzukiSW, et al., 2016. The intrinsically disordered protein Atg13 mediates supramolecular assembly of autophagy initiation complexes. Dev Cell, 38(1):86-99. ![]() [119]YuWJ, GaoBL, LiN, et al., 2017. Sirt3 deficiency exacerbates diabetic cardiac dysfunction: role of Foxo3A-Parkin-mediated mitophagy. Biochim Biophys Acta (BBA)-Mol Basis Dis, 1863(8):1973-1983. ![]() [120]YuXB, ChenGY, ZhouL, et al., 2022. Chondroprotective effects of Gubitong recipe via inhibiting excessive mitophagy of chondrocytes. Evid Based Complement Alternat Med, 2022:8922021. ![]() [121]ZhangXJ, ChenS, SongL, et al., 2014. MTOR-independent, autophagic enhancer trehalose prolongs motor neuron survival and ameliorates the autophagic flux defect in a mouse model of amyotrophic lateral sclerosis. Autophagy, 10(4):588-602. ![]() [122]ZhangYJ, LiuY, HouMZ, et al., 2023. Reprogramming of mitochondrial respiratory chain complex by targeting SIRT3-COX4I2 axis attenuates osteoarthritis progression. Adv Sci (Weinh), 10(10):2206144. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>