CLC number:
On-line Access: 2025-02-26
Received: 2023-06-12
Revision Accepted: 2023-11-08
Crosschecked: 2025-02-27
Cited: 0
Clicked: 2035
Citations: Bibtex RefMan EndNote GB/T7714
https://orcid.org/0000-0002-1671-0723
Mingtao LIU, Li LIU, Jiaxi CHEN, Zhifeng HUANG, Huiqing ZHU, Shengxuan LIN, Weitian QI, Zhangkai J. CHENG, Ning LI, Baoqing SUN. Thirteen serum biochemical indexes and five whole blood coagulation indices in a point-of-care testing analyzer: ideal protocol for evaluating pulmonary and critical care medicine[J]. Journal of Zhejiang University Science B,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.B2300433 @article{title="Thirteen serum biochemical indexes and five whole blood coagulation indices in a point-of-care testing analyzer: ideal protocol for evaluating pulmonary and critical care medicine", %0 Journal Article TY - JOUR
床旁即时检测分析仪在血清生化十三项指标与全血凝血五项指标的应用:评估呼吸与危重症疾病的理想工具1广州医科大学附属第一医院检验科, 广州实验室, 国家呼吸疾病临床医学中心, 国家呼吸医学中心, 呼吸疾病全国重点实验室, 广州呼吸健康研究院, 中国广州市, 510140 2广州医科大学金域检验学院, 中国广州市, 511495 3广东医科大学医学技术学院, 中国东莞市, 523121 4南方医科大学第二临床医学院, 中国广州市, 510515 摘要:生化和凝血指标的准确及时检测对呼吸及危重症患者至关重要。传统实验室检测虽可靠,但往往较为滞后。床边即时检测(POCT)已成为一种潜在的替代方法,但仍待严格验证。使用Beckman Coulter AU5821和PUSHKANG POCT生化分析仪以及Stago STAR MAX和PUSHKANG POCT凝血分析仪分别对广州医科大学附属第一医院的226份血清和350份全血样本进行包括白蛋白等十三项生化指标和凝血酶原时间等五项凝血指标进行比对检测。Bland-Altman图(MS100: 0.8206?0.9995; MC100: 0.8318?0.9911)一致性较好。Spearman相关分析显示,传统仪器和PUSHKANG POCT分析仪之间存在显著的线性相关性,且相关系数稳健(MS100: 0.713?0.949; MC100: 0.593?0.950)。PUSHKANG POCT作为一种可靠的血清、全血生化和凝血快速诊断工具,具有稳定的临床评价功能,可为呼吸与危重症临床医师在患者紧急病况时提供及时预示。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]AthaleUH, ChanAKC, 2003. Thrombosis in children with acute lymphoblastic leukemia: Part II. Pathogenesis of thrombosis in children with acute lymphoblastic leukemia: effects of the disease and therapy. Thromb Res, 111(4-5):199-212. ![]() [2]BriggsC, KimberS, GreenL, 2012. Where are we at with point‐of‐care testing in haematology?Br J Haematol, 158(6):679-690. ![]() [3]ChaseJG, PreiserJC, DicksonJL, et al., 2018. Next-generation, personalised, model-based critical care medicine: a state-of-the art review of in silico virtual patient models, methods, and cohorts, and how to validation them. Biomed Eng Online, 17:24. ![]() [4]China Food and Drug Administration, 2014. Notice of the State Food and Drug Administration in China on Issuing Technical Guidelines for Clinical Trials of In Vitro Diagnostic Reagents. https://www.nmpa.gov.cn/directory/web/nmpa//xxgk/ggtg/ylqxggtg/ylqxqtggtg/20140911120001840.html ![]() [5]Clinical and Laboratory Standards Institute, 2012. Verification of Comparability of Patient Results Within One Health Care System; Approved Guideline. CLSI Document C54-A, Clinical and Laboratory Standards Institute, Wayne. ![]() [6]Clinical and Laboratory Standards Institute, 2013. Measurement Procedure Comparison and Bias Estimation Using Patient Samples; Approved Guideline. Third Edition. CLSI Document EP09-A3, Clinical and Laboratory Standards Institute, Wayne. ![]() [7]CuiP, WangSC, 2019. Application of microfluidic chip technology in pharmaceutical analysis: a review. J Pharm Anal, 9(4):238-247. ![]() [8]EbnerM, BirschmannI, PeterA, et al., 2017. Point-of-care testing for emergency assessment of coagulation in patients treated with direct oral anticoagulants. Crit Care, 21:32. ![]() [9]FlorkowskiC, Don-WauchopeA, GimenezN, et al., 2017. Point-of-care testing (POCT) and evidence-based laboratory medicine (EBLM)‒does it leverage any advantage in clinical decision making? Crit Rev Clin Lab Sci, 54(7-8):471-494. ![]() [10]FragosoCAV, 2017. Epidemiology of lung disease in older persons. Clin Geriatr Med, 33(4):491-501. ![]() [11]GervaisL, de RooijN, DelamarcheE, 2011. Microfluidic chips for point‐of‐care immunodiagnostics. Adv Mater, 23(24):H151-H176. ![]() [12]GreenhalghT, KnightM, A'CourtC, et al., 2020. Management of post-acute COVID-19 in primary care. BMJ, 370:m3026. ![]() [13]HerrmannJ, NotzQ, SchlesingerT, et al., 2021. Point of care diagnostic of hypercoagulability and platelet function in COVID-19 induced acute respiratory distress syndrome: a retrospective observational study. Thromb J, 19:39. ![]() [14]IchkawaY, WadaH, EzakiM, et al., 2020. Elevated d-dimer levels predict a poor outcome in critically ill patients. Clin Appl Thromb Hemost, 26:1076029620973084. ![]() [15]LinJ, YanH, ChenHC, et al., 2021. COVID‐19 and coagulation dysfunction in adults: a systematic review and meta‐analysis. J Med Virol, 93(2):934-944. ![]() [16]LiuMT, ChengZJ, XueMS, et al., 2023a. The application of metabolomics toward idiopathic pulmonary fibrosis and potential metabolomic value of diverse samples in interstitial lung diseases. Precis Med Sci, 12(3):134-143. ![]() [17]LiuMT, LyuJ, ZhengXH, et al., 2023b. Evolution of the newest diagnostic methods for COVID-19: a Chinese perspective. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 24(6):463-484. ![]() [18]LiuMT, LiangZM, ChengZK, et al., 2023c. SARS-CoV-2 neutralising antibody therapies: recent advances and future challenges. Rev Med Virol, 33(5):e2464. ![]() [19]LuppaPB, MüllerC, SchlichtigerA, et al., 2011. Point-of-care testing (POCT): current techniques and future perspectives. TrAC Trends Anal Chem, 30(6):887-898. ![]() [20]LuppaPB, BietenbeckA, BeaudoinC, et al., 2016. Clinically relevant analytical techniques, organizational concepts for application and future perspectives of point-of-care testing. Biotechnol Adv, 34(3):139-160. ![]() [21]MansourSA, MossaATH, 2010. Oxidative damage, biochemical and histopathological alterations in rats exposed to chlorpyrifos and the antioxidant role of zinc. Pestic Biochem Physiol, 96(1):14-23. ![]() [22]ParikhCR, 2009. A point-of-care device for acute kidney injury: a fantastic, futuristic, or frivolous ‘measure’? Kidney Int, 76(1):8-10. ![]() [23]ParshallMB, SchwartzsteinRM, AdamsL, et al., 2012. An official american thoracic society statement: update on the mechanisms, assessment, and management of dyspnea. Am J Respir Crit Care Med, 185(4):435-452. ![]() [24]SherM, ZhuangR, DemirciU, et al., 2017. Paper-based analytical devices for clinical diagnosis: recent advances in the fabrication techniques and sensing mechanisms. Expert Rev Mol Diagn, 17(4):351-366. ![]() [25]SolerM, EstevezMC, Cardenosa-RubioM, et al., 2020. How nanophotonic label-free biosensors can contribute to rapid and massive diagnostics of respiratory virus infections: COVID-19 case. ACS Sens, 5(9):2663-2678. ![]() [26]SongJC, WangG, ZhangW, et al., 2020. Chinese expert consensus on diagnosis and treatment of coagulation dysfunction in COVID-19. Military Med Res, 7:19. ![]() [27]St-LouisP, 2000. Status of point-of-care testing: promise, realities, and possibilities. Clin Biochem, 33(6):427-440. ![]() [28]StootLJ, CairnsNA, CullF, et al., 2014. Use of portable blood physiology point-of-care devices for basic and applied research on vertebrates: a review. Conserv Physiol, 2:cou011. ![]() [29]TanejaR, BatraP, 2021. Biomarkers as point of care tests (POCT) in neonatal sepsis: a state of science review. J Neonat-Perinat Med, 14(3):331-338. ![]() [30]TorresN, Torre-VillalvazoI, TovarAR, 2006. Regulation of lipid metabolism by soy protein and its implication in diseases mediated by lipid disorders. J Nutr Biochem, 17(6):365-373. ![]() [31]VesperHW, MyersGL, MillerWG, 2016. Current practices and challenges in the standardization and harmonization of clinical laboratory tests. Am J Clin Nutr, 104(S3):907S-912S. ![]() [32]VolpicelliG, ElbarbaryM, BlaivasM, et al., 2012. International evidence-based recommendations for point-of-care lung ultrasound. Intens Care Med, 38(4):577-591. ![]() [33]XiaoM, TianF, LiuX, et al., 2022. Virus detection: from state‐of‐the‐art laboratories to smartphone‐based point‐of‐care testing. Adv Sci, 9(17):2105904. ![]() [34]XueMS, ZhangT, ChengZJ, et al., 2022. Effect of a functional phospholipid metabolome-protein association pathway on the mechanism of COVID-19 disease progression. Int J Biol Sci, 18(12):4618-4628. ![]() [35]Zaczek-MoczydlowskaMA, BeizaeiA, DillonM, et al., 2021. Current state-of-the-art diagnostics for norovirus detection: model approaches for point-of-care analysis. Trends Food Sci Technol, 114:684-695. ![]() [36]ZhangYT, ZhouND, 2022. Electrochemical biosensors based on micro‐fabricated devices for point‐of‐care testing: a review. Electroanalysis, 34(2):168-183. ![]() [37]ZhuHL, ZhangHQ, NiS, et al., 2020. The vision of point-of-care PCR tests for the COVID-19 pandemic and beyond. TrAC Trends Anal Chem, 130:115984. ![]() [38]ZhuHQ, HuangZF, HuangHM, et al., 2022. Evaluation of a point-of-care testing analyzer for measuring peripheral blood leukocytes. J Vis Exp, (181):e63364. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>