
CLC number:
On-line Access: 2025-04-23
Received: 2023-09-21
Revision Accepted: 2024-01-25
Crosschecked: 2025-04-24
Cited: 0
Clicked: 3476
Shijin YUAN, Yan XIA, Guangwei DAI, Shun RAO, Rongrong HU, Yuzhen GAO, Qing QIU, Chenghao WU, Sai QIAO, Yinghua XU, Xinyou XIE, Haizhou LOU, Xian WANG, Jun ZHANG. Single-cell and spatial transcriptomic analysis reveals that an immune cell-related signature could predict clinical outcomes for microsatellite-stable colorectal cancer patients receiving immunotherapy[J]. Journal of Zhejiang University Science B,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.B2300679 @article{title="Single-cell and spatial transcriptomic analysis reveals that an immune cell-related signature could predict clinical outcomes for microsatellite-stable colorectal cancer patients receiving immunotherapy", %0 Journal Article TY - JOUR
单细胞联合空间转录组分析揭示免疫细胞相关特征可以预测微卫星稳定结直肠癌患者接受免疫治疗的临床结局1浙江大学医学院附属邵逸夫医院检验科,中国杭州市,310016 2浙江大学医学院附属邵逸夫医院肿瘤内科,中国杭州市,310016 3浙江省医学精准检验与监测研究重点实验室,中国杭州市,310016 4永康市中医院西城分院,中国金华市,321300 摘要:近期研究表明,血管内皮生长因子受体抑制剂(VEGFRi)可以增强程序性死亡受体1(PD-1)抗体对微卫星稳定(MSS)结直肠癌(CRC)的抗肿瘤活性。然而,与标准三线VEGFRi治疗相比,这种联合治疗的疗效尚未明确,且目前缺乏可靠的生物标志物。本研究中,我们回顾性纳入了接受PD-1抗体联合VEGFRi(联合组,n=54)或单独VEGFRi(VEGFRi组,n=32)治疗的MSS CRC患者,并评估了其疗效和安全性。我们通过单细胞和空间转录组数据进一步研究了MSS CRC肿瘤微环境(TME)的免疫特征,构建了一个预测接受免疫治疗的MSS CRC患者临床结局的MSS CRC免疫细胞相关特征(MCICRS),并在内部队列中对其进行验证。研究发现,与单独VEGFRi治疗相比,PD-1抗体联合VEGFRi治疗能显著延长患者的生存期(中位无进展生存期:4.4个月 vs. 2.0个月,P=0.0024;中位总生存期:10.2个月 vs. 5.2个月,P=0.0038),且两组间不良事件的发生率相当。进一步通过单细胞和空间转录组分析,我们确定了10种MSS CRC富集的免疫细胞类型及其空间分布,包括幼稚CD4+ T细胞、调节性CD4+ T细胞、CD4+ Th17细胞、耗竭CD8+ T细胞、细胞毒性CD8+ T细胞、增殖CD8+ T细胞、自然杀伤(NK)细胞、浆细胞和经典/中间型单核细胞。基于meta分析和10种机器学习算法,我们构建了MCICRS,其是一个独立的MSS CRC患者的预后风险因素。通过进一步分析,MCICRS低风险组患者表现出更高的免疫细胞浸润和免疫相关通路激活,同时与泛癌免疫治疗的客观反应率和无进展生存有显著关联。最后,MCICRS在MSS CRC接受免疫治疗的预测价值也在内部队列中得到了验证。综上所述,PD-1抗体联合VEGFRi可以改善MSS CRC的临床结局且可控制毒性,同时MCICRS可以作为一个强大且有前景的工具,用于预测接受免疫治疗的MSS CRC患者的临床结局。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]AndréT, ShiuKK, KimTW, et al., 2020. Pembrolizumab in microsatellite-instability-high advanced colorectal cancer. N Engl J Med, 383(23):2207-2218. ![]() [2]ButlerA, HoffmanP, SmibertP, et al., 2018. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat Biotechnol, 36(5):411-420. ![]() [3]ColapricoA, SilvaTC, OlsenC, et al., 2016. TCGAbiolinks: an R/Bioconductor package for integrative analysis of TCGA data. Nucleic Acids Res, 44(8):e71. ![]() [4]CousinS, CantarelC, GueganJP, et al., 2021. Regorafenib-avelumab combination in patients with microsatellite stable colorectal cancer (REGOMUNE): a single-arm, open-label, phase II trial. Clin Cancer Res, 27(8):2139-2147. ![]() [5]DoroshowDB, BhallaS, BeasleyMB, et al., 2021. PD-L1 as a biomarker of response to immune-checkpoint inhibitors. Nat Rev Clin Oncol, 18(6):345-362. ![]() [6]EngstrandJ, NilssonH, StrömbergC, et al., 2018. Colorectal cancer liver metastases - a population-based study on incidence, management and survival. BMC Cancer, 18:78. ![]() [7]FinnRS, QinSK, IkedaM, et al., 2020. Atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma. N Engl J Med, 382(20):1894-1905. ![]() [8]FukuokaS, HaraH, TakahashiN, et al., 2020. Regorafenib plus nivolumab in patients with advanced gastric or colorectal cancer: an open-label, dose-escalation, and dose-expansion phase Ib trial (REGONIVO, EPOC1603). J Clin Oncol, 38(18):2053-2061. ![]() [9]GrotheyA, van CutsemE, SobreroA, et al., 2013. Regorafenib monotherapy for previously treated metastatic colorectal cancer (CORRECT): an international, multicentre, randomised, placebo-controlled, phase 3 trial. Lancet, 381(9863):303-312. ![]() [10]HoP, MelmsJC, RogavaM, et al., 2023. The CD58-CD2 axis is co-regulated with PD-L1 via CMTM6 and shapes anti-tumor immunity. Cancer Cell, 41(7):1207-1221.e12. ![]() [11]HodiFS, LawrenceD, LezcanoC, et al., 2014. Bevacizumab plus ipilimumab in patients with metastatic melanoma. Cancer Immunol Res, 2(7):632-642. ![]() [12]HouseIG, SavasP, LaiJY, et al., 2020. Macrophage-derived CXCL9 and CXCL10 are required for antitumor immune responses following immune checkpoint blockade. Clin Cancer Res, 26(2):487-504. ![]() [13]JinSQ, Guerrero-JuarezCF, ZhangLH, et al., 2021. Inference and analysis of cell-cell communication using CellChat. Nat Commun, 12:1088. ![]() [14]KarapetisCS, Khambata-FordS, JonkerDJ, et al., 2008. K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N Engl J Med, 359(17):1757-1765. ![]() [15]KimRD, KovariBP, MartinezM, et al., 2022. A phase I/Ib study of regorafenib and nivolumab in mismatch repair proficient advanced refractory colorectal cancer. Eur J Cancer, 169:93-102. ![]() [16]LangfelderP, HorvathS, 2008. WGCNA: an R package for weighted correlation network analysis. BMC Bioinf, 9:559. ![]() [17]LeDT, UramJN, WangH, et al., 2015. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med, 372(26):2509-2520. ![]() [18]LeDT, DurhamJN, SmithKN, et al., 2017. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science, 357(6349):409-413. ![]() [19]LeDT, KimTW, van CutsemE, et al., 2020. Phase II open-label study of pembrolizumab in treatment-refractory, microsatellite instability-high/mismatch repair-deficient metastatic colorectal cancer: KEYNOTE-164. J Clin Oncol, 38(1):11-19. ![]() [20]LeeHO, HongY, EtliogluHE, et al., 2020. Lineage-dependent gene expression programs influence the immune landscape of colorectal cancer. Nat Genet, 52(6):594-603. ![]() [21]LiJ, QinSK, XuRH, et al., 2018. Effect of fruquintinib vs placebo on overall survival in patients with previously treated metastatic colorectal cancer: the FRESCO randomized clinical trial. JAMA, 319(24):2486-2496. ![]() [22]LiYS, ShenZY, ChaiZ, et al., 2023. Targeting MS4A4A on tumour-associated macrophages restores CD8+ T-cell-mediated antitumour immunity. Gut, 72(12):2307-2320. ![]() [23]LiebermeisterW, NoorE, FlamholzA, et al., 2014. Visual account of protein investment in cellular functions. Proc Natl Acad Sci USA, 111(23):8488-8493. ![]() [24]MariathasanS, TurleySJ, NicklesD, et al., 2018. TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature, 554(7693):544-548. ![]() [25]McDermottDF, HuseniMA, AtkinsMB, et al., 2018. Clinical activity and molecular correlates of response to atezolizumab alone or in combination with bevacizumab versus sunitinib in renal cell carcinoma. Nat Med, 24(6):749-757. ![]() [26]MintsM, LandinD, NäsmanA, et al., 2021. Tumour inflammation signature and expression of S100A12 and HLA class I improve survival in HPV-negative hypopharyngeal cancer. Sci Rep, 11:1782. ![]() [27]ModestDP, PantS, Sartore-BianchiA, 2019. Treatment sequencing in metastatic colorectal cancer. Eur J Cancer, 109:70-83. ![]() [28]OvermanMJ, McDermottR, LeachJL, et al., 2017. Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): an open-label, multicentre, phase 2 study. Lancet Oncol, 18(9):1182-1191. ![]() [29]OvermanMJ, LonardiS, WongKYM, et al., 2018. Durable clinical benefit with nivolumab plus ipilimumab in DNA mismatch repair-deficient/microsatellite instability-high metastatic colorectal cancer. J Clin Oncol, 36(8):773-779. ![]() [30]ParikhAR, SzabolcsA, AllenJN, et al., 2021. Radiation therapy enhances immunotherapy response in microsatellite stable colorectal and pancreatic adenocarcinoma in a phase II trial. Nat Cancer, 2(11):1124-1135. ![]() [31]QiuXJ, MaoQ, TangY, et al., 2017. Reversed graph embedding resolves complex single-cell trajectories. Nat Methods, 14(10):979-982. ![]() [32]RahmaOE, HodiFS, 2019. The intersection between tumor angiogenesis and immune suppression. Clin Cancer Res, 25(18):5449-5457. ![]() [33]ShiR, WangX, WuY, et al., 2022. APOBEC-mediated mutagenesis is a favorable predictor of prognosis and immunotherapy for bladder cancer patients: evidence from pan-cancer analysis and multiple databases. Theranostics, 12(9):4181-4199. ![]() [34]SocinskiMA, JotteRM, CappuzzoF, et al., 2018. Atezolizumab for first-line treatment of metastatic nonsquamous NSCLC. N Engl J Med, 378(24):2288-2301. ![]() [35]SungH, FerlayJ, SiegelRL, et al., 2021. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 71(3):209-249. ![]() [36]WuYC, YangSX, MaJQ, et al., 2022. Spatiotemporal immune landscape of colorectal cancer liver metastasis at single-cell level. Cancer Discov, 12(1):134-153. ![]() [37]ZhangL, YuX, ZhengLT, et al., 2018. Lineage tracking reveals dynamic relationships of T cells in colorectal cancer. Nature, 564(7735):268-272. ![]() [38]ZhangL, LiZY, SkrzypczynskaKM, et al., 2020. Single-cell analyses inform mechanisms of myeloid-targeted therapies in colon cancer. Cell, 181(2):442-459.e29. ![]() [39]ZhengLT, QinSS, SiW, et al., 2021. Pan-cancer single-cell landscape of tumor-infiltrating T cells. Science, 374(6574):abe6474. ![]() [40]ZhengRS, ZhangSW, SunKX, et al., 2023. Cancer statistics in China, 2016. Chin J Oncol, 45(3):212-220 (in Chinese). ![]() [41]ZhouH, ZhuLY, SongJ, et al., 2022. Liquid biopsy at the frontier of detection, prognosis and progression monitoring in colorectal cancer. Mol Cancer, 21:86. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2026 Journal of Zhejiang University-SCIENCE | ||||||||||||||



Open peer comments: Debate/Discuss/Question/Opinion
<1>