CLC number:
On-line Access: 2025-08-25
Received: 2024-05-10
Revision Accepted: 2024-09-20
Crosschecked: 2025-08-25
Cited: 0
Clicked: 1117
Shimaa O. ALI, Nancy N. SHAHIN, Marwa M. SAFAR, Sherine M. RIZK. Potential effect of endothelial progenitor cells on pentylenetetrazole-induced seizures in rats: an evaluation of relevant lncRNAs[J]. Journal of Zhejiang University Science B,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.B2400242 @article{title="Potential effect of endothelial progenitor cells on pentylenetetrazole-induced seizures in rats: an evaluation of relevant lncRNAs", %0 Journal Article TY - JOUR
内皮祖细胞对戊四氮致痫大鼠的潜在影响: 通过相关lncRNAs进行评估1Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt 2Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt 3Pharmacology and Biochemistry Department, Faculty of Pharmacy, The British University in Egypt, Cairo 11837, Egypt 摘要:干细胞因其独特的特性,在癫痫治疗中展现出广阔的应用前景。本研究探讨了内皮祖细胞(EPCs)在戊四氮(PTZ)诱导的大鼠癫痫模型中的作用,并分析了一组在脑神经调控网络和自噬通路中起着维持精细平衡作用的长链非编码RNAs(lncRNAs)。通过检测神经损伤标志物、神经营养因子和相关lncRNA基因的表达,评估了静脉注射EPCs对PTZ致痫大鼠的影响,并采用Y迷宫测试和旷场实验(OFT)对大鼠的行为进行评估。研究结果显示,EPCs能减轻癫痫发作相关的神经损伤,并逆转PTZ诱导的工作记忆和运动活动障碍,这可从Y迷宫和OFT测试中表现改善得到了印证。EPCs治疗逆转了lncRNAs Evf2、Pnky、Dlx1、APF、HOTAIR和FLJ11812的下调,同时促进了血管内皮生长因子(VEGF)的表达,其改善作用与丙戊酸相当。综上,EPCs可改善点燃型癫痫发作及其相关异常,该作用可能通过上调特定调控性lncRNAs介导。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]AboeisaMI, SeleemMAH, el GoharyTM, et al., 2022. Study of cognitive and behavioral impacts of idiopathic epilepsy and antiepileptic drugs (AEDs) in children and adolescents. J Adv Med Med Res, 34(19):176-187. ![]() [2]AliSO, ShahinNN, SafarMM, et al., 2019. Therapeutic potential of endothelial progenitor cells in a rat model of epilepsy: role of autophagy. J Adv Res, 18:101-112. ![]() [3]ApreaJ, CalegariF, 2015. Long non-coding RNAs in corticogenesis: deciphering the non-coding code of the brain. EMBO J, 34(23):2865-2884. ![]() [4]AvolioE, CaputoM, MadedduP, 2015. Stem cell therapy and tissue engineering for correction of congenital heart disease. Front Cell Dev Biol, 3:39. ![]() [5]BiswasS, FengB, ChenSL, et al., 2021. The long non-coding RNA HOTAIR is a critical epigenetic mediator of angiogenesis in diabetic retinopathy. Invest Ophthalmol Vis Sci, 62(3):20. ![]() [6]BondAM, VangompelMJW, SametskyEA, et al., 2009. Balanced gene regulation by an embryonic brain ncRNA is critical for adult hippocampal GABA circuitry. Nat Neurosci, 12(8):1020-1027. ![]() [7]CajigasI, LeibDE, CochraneJ, et al., 2015. Evf2 lncRNA/BRG1/DLX1 interactions reveal RNA-dependent inhibition of chromatin remodeling. Development, 142(15):2641-2652. ![]() [8]ChangJL, AtochinDN, LiQ, et al., 2013. Bone marrow-derived circulating endothelial progenitor cells contribute to ENOS-regulated endothelial repair and vasodilation after arterial injury in vivo. J Cardio Vasc Med, 1:1-8. ![]() [9]CobosI, CalcagnottoME, VilaythongAJ, et al., 2005. Mice lacking Dlx1 show subtype-specific loss of interneurons, reduced inhibition and epilepsy. Nat Neurosci, 8(8):1059-1068. ![]() [10]CroceN, MathéAA, GelfoF, et al., 2014. Effects of lithium and valproic acid on BDNF protein and gene expression in an in vitro human neuron-like model of degeneration. J Psychopharmacol, 28(10):964-972. ![]() [11]Cuevas-Diaz DuranR, WeiH, KimDH, et al., 2019. Invited Review: long non-coding RNAs: important regulators in the development, function and disorders of the central nervous system. Neuropathol Appl Neurobiol, 45(6):538-556. ![]() [12]DhirA, 2012. Pentylenetetrazol (PTZ) kindling model of epilepsy. Curr Protoc Neurosci, 58:9.37.1-9.37.12. ![]() [13]DunnC, SturdivantN, VenierS, et al., 2021. Blood–brain barrier breakdown and astrocyte reactivity evident in the absence of behavioral changes after repeated traumatic brain injury. Neurotrauma Rep, 2(1):399-410. ![]() [14]ErkeçÖE, 2015. Pentylenetetrazol kindling epilepsy model. J Turkish Epilepsi Soc, 21(1):6-12. ![]() [15]FengZY, ZhangQY, TanJ, et al., 2022. Techniques for increasing the yield of stem cell-derived exosomes: what factors may be involved? Sci China Life Sci, 65(7):1325-1341. ![]() [16]FernandesDP, BitarM, JacobsFMJ, et al., 2018. Long non-coding RNAs in neuronal aging. Noncoding RNA, 4(2):12. ![]() [17]FernandesJCR, AcuñaSM, AokiJI, et al., 2019. Long non-coding RNAs in the regulation of gene expression: physiology and disease. Noncoding RNA, 5(1):17. ![]() [18]FicoA, FiorenzanoA, PascaleE, et al., 2019. Long non-coding RNA in stem cell pluripotency and lineage commitment: functions and evolutionary conservation. Cell Mol Life Sci, 76(8):1459-1471. ![]() [19]GaoJ, JiaoH, CaoR, et al., 2016. In vitro study of effects and mechanism of rapamycin-induced autophagy in keloid fibroblasts. Chin J Plast Surg, 32(3):208-214 (in Chinese). ![]() [20]GeD, HanL, HuangSY, et al., 2014. Identification of a novel MTOR activator and discovery of a competing endogenous RNA regulating autophagy in vascular endothelial cells. Autophagy, 10(6):957-971. ![]() [21]GhafouriS, FathollahiY, JavanM, et al., 2016. Effect of low frequency stimulation on impaired spontaneous alternation behavior of kindled rats in Y-maze test. Epilepsy Res, 126:37-44. ![]() [22]GuP, XuZH, CaoYZ, et al., 2020. Synchrotron radiation-based three-dimensional visualization of angioarchitectural remodeling in hippocampus of epileptic rats. Neurosci Bull, 36(4):333-345. ![]() [23]GuptaR, AmbastaRK, KumarP, 2021. Autophagy and apoptosis cascade: which is more prominent in neuronal death? Cell Mol Life Sci, 78(24):8001-8047. ![]() [24]GuyR, OffenD, 2020. Promising opportunities for treating neurodegenerative diseases with mesenchymal stem cell-derived exosomes. Biomolecules, 10(9):1320. ![]() [25]HeLL, LinMM, ShenJ, et al., 2022. Emerging role of exosomal long non-coding RNAs in lung cancer. Mol Biol Rep, 49(6):4989-4997. ![]() [26]HinesPJ, 2016. A long noncoding RNA for neuronal differentiation. Science, 353(6297):360-361. ![]() [27]HoganRE, 2018. Drug resistant epilepsy and new AEDs: two perspectives. Epilepsy Curr, 18(5):304-306. ![]() [28]HoshinoC, KonnoA, HosoiN, et al., 2021. GABAergic neuron-specific whole-brain transduction by AAV-PHP.B incorporated with a new GAD65 promoter. Mol Brain, 14:33. ![]() [29]HosseiniE, Bagheri-HosseinabadiZ, de TomaI, et al., 2019. The importance of long non-coding RNAs in neuropsychiatric disorders. Mol Aspects Med, 70:127-140. ![]() [30]IlievaM, UchidaS, 2022. Long noncoding RNAs in induced pluripotent stem cells and their differentiation. Am J Physiol Cell Physiol, 322(4):C769-C774. ![]() [31]JonesDL, HowardMA, StancoA, et al., 2011. Deletion of Dlx1 results in reduced glutamatergic input to hippocampal interneurons. J Neurophysiol, 105(5):1984-1991. ![]() [32]KannoH, HandaK, MurakamiT, et al., 2022. Chaperone-mediated autophagy in neurodegenerative diseases and acute neurological insults in the central nervous system. Cells, 11(7):1205. ![]() [33]KhalifeMR, ScottRC, HernanAE, 2022. Mechanisms for cognitive impairment in epilepsy: moving beyond seizures. Front Neurol, 13:878991. ![]() [34]KimCK, ParkJS, KimE, et al., 2022. The effects of early exercise in traumatic brain-injured rats with changes in motor ability, brain tissue, and biomarkers. BMB Rep, 55(10):512-517. ![]() [35]KimJY, BaruaS, HuangMY, et al., 2020. Heat shock protein 70 (HSP70) induction: chaperonotherapy for neuroprotection after brain injury. Cells, 9(9):2020. ![]() [36]KobayashiK, EndohF, OhmoriI, et al., 2020. Action of antiepileptic drugs on neurons. Brain Dev, 42(1):2-5. ![]() [37]KohtzJD, 2014. Long non-coding RNAs learn the importance of being in vivo. Front Genet, 5:45. ![]() [38]KuoFC, WangYT, LiuCH, et al., 2022. LncRNA HOTAIR impairs the prognosis of papillary thyroid cancer via regulating cellular malignancy and epigenetically suppressing DLX1. Cancer Cell Int, 22:396. ![]() [39]LeTN, ZhouQP, CobosI, et al., 2017. GABAergic interneuron differentiation in the basal forebrain is mediated through direct regulation of glutamic acid decarboxylase isoforms by Dlx homeobox transcription factors. J Neurosci, 37(36):8816-8829. ![]() [40]LiL, LuoQ, ShangB, et al., 2022. Selective activation of cannabinoid receptor-2 reduces white matter injury via PERK signaling in a rat model of traumatic brain injury. Exp Neurol, 347:113899. ![]() [41]LiP, JiaYY, TangWB, et al., 2021. Roles of non-coding RNAs in central nervous system axon regeneration. Front Neurosci, 15:630633. ![]() [42]LiSL, LiYC, ChenB, et al., 2018. ExoRBase: a database of circRNA, lncRNA and mRNA in human blood exosomes. Nucleic Acids Res, 46(D1):D106-D112. ![]() [43]LiangKG, MuRZ, LiuY, et al., 2019. Increased serum S100B levels in patients with epilepsy: a systematic review and meta-analysis study. Front Neurosci, 13:456. ![]() [44]LuccheseG, StahlB, 2018. Peptide sharing between viruses and DLX proteins: a potential cross-reactivity pathway to neuropsychiatric disorders. Front Neurosci, 12:150. ![]() [45]MaQQ, LongSH, GanZD, et al., 2022. Transcriptional and post-transcriptional regulation of autophagy. Cells, 11(3):441. ![]() [46]MarchiN, Lerner-NatoliM, 2013. Cerebrovascular remodeling and epilepsy. Neuroscientist, 19(3):304-312. ![]() [47]MatuszczakE, TylickaM, KomarowskaMD, et al., 2020. Ubiquitin carboxy-terminal hydrolase L1 – physiology and pathology. Cell Biochem Funct, 38(5):533-540. ![]() [48]MondelloS, PalmioJ, StreeterJ, et al., 2012. Ubiquitin Carboxy-Terminal Hydrolase L1 (UCH-L1) is increased in cerebrospinal fluid and plasma of patients after epileptic seizure. BMC Neurol, 12:85. ![]() [49]Morin-BrureauM, LebrunA, RoussetMC, et al., 2011. Epileptiform activity induces vascular remodeling and zonula occludens 1 downregulation in organotypic hippocampal cultures: role of VEGF signaling pathways. J Neurosci, 31(29):10677-10688. ![]() [50]OgakiA, IkegayaY, KoyamaR, 2020. Vascular abnormalities and the role of vascular endothelial growth factor in the epileptic brain. Front Pharmacol, 11:20. ![]() [51]ÖhrfeltA, JohanssonP, WallinA, et al., 2016. Increased cerebrospinal fluid levels of ubiquitin carboxyl-terminal hydrolase L1 in patients with Alzheimer’s disease. Dement Geriatr Cogn Dis Extra, 6(2):283-294. ![]() [52]OnumaT, 2011. Cognitive dysfunction and antiepileptic drugs. Brain Nerve, 63(4):379-383 (in Japanese). ![]() [53]PahwaP, GoelRK, 2016. Ameliorative effect of Asparagus racemosus root extract against pentylenetetrazol-induced kindling and associated depression and memory deficit. Epilepsy Behav, 57:196-201. ![]() [54]ParkKJ, ParkE, LiuE, et al., 2014. Bone marrow-derived endothelial progenitor cells protect postischemic axons after traumatic brain injury. J Cereb Blood Flow Metab, 34(2):357-366. ![]() [55]QinC, WangKW, ZhangL, et al., 2022. Stem cell therapy for Alzheimer’s disease: an overview of experimental models and reality. Anim Model Exp Med, 5(1):15-26. ![]() [56]RacineRJ, 1972. Modification of seizure activity by electrical stimulation. II. Motor seizure. Electroencephalogr Clin Neurophysiol, 32(3):281-294. ![]() [57]RamosAD, AndersenRE, LiuSJ, et al., 2015. The long noncoding RNA Pnky regulates neuronal differentiation of embryonic and postnatal neural stem cells. Cell Stem Cell, 16(4):439-447. ![]() [58]RatajczakJ, MiekusK, KuciaM, et al., 2006. Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: evidence for horizontal transfer of mRNA and protein delivery. Leukemia, 20(5):847-856. ![]() [59]RatajczakMZ, RatajczakJ, 2016. Horizontal transfer of RNA and proteins between cells by extracellular microvesicles: 14 years later. Clin Trans Med, 5(1):e7. ![]() [60]RatajczakMZ, RatajczakD, PedziwiatrD, 2016. Extracellular microvesicles (ExMVs) in cell to cell communication: a role of telocytes. In: Wang XD, Cretoiu D (Eds.), Telocytes. Springer, Singapore, p.41-49. ![]() [61]RejdakK, KuhleJ, RüeggS, et al., 2012. Neurofilament heavy chain and heat shock protein 70 as markers of seizure-related brain injury. Epilepsia, 53(5):922-927. ![]() [62]SafarMM, ArabHH, RizkSM, et al., 2016. Bone marrow-derived endothelial progenitor cells protect against scopolamine-induced Alzheimer-like pathological aberrations. Mol Neurobiol, 53(3):1403-1418. ![]() [63]SafarMM, ShahinNN, MohamedAF, et al., 2020. Suppression of BACE1 and amyloidogenic/RAGE axis by sitagliptin ameliorates PTZ kindling-induced cognitive deficits in rats. Chem Biol Interact, 328:109144. ![]() [64]SeçenAE, AkçalıDT, KurtG, 2023. The S100B protein in epilepsy. Arch Epilepsy, 29(2):37-40. ![]() [65]ShiLJ, HanX, LiuC, et al., 2022. Long non-coding RNA PNKY modulates the development of choroidal neovascularization. Front Cell Dev Biol, 10:836031. ![]() [66]TakechiK, SuemaruK, KawasakiH, et al., 2012. Impaired memory following repeated pentylenetetrazol treatments in kindled mice. Yakugaku Zasshi, 132(2):179-182 (in Japanese). ![]() [67]TanW, WangK, YangX, et al., 2022. LncRNA HOTAIR promotes myocardial fibrosis in atrial fibrillation through binding with PTBP1 to increase the stability of Wnt5a. Int J Cardiol, 369:21-28. ![]() [68]Tello-FloresVA, Beltrán-AnayaFO, Ramírez-VargasMA, et al., 2021. Role of long non-coding RNAs and the molecular mechanisms involved in insulin resistance. Int J Mol Sci, 22(14):7256. ![]() [69]van VlietEA, Ndode-EkaneXE, LehtoLJ, et al., 2020. Long-lasting blood-brain barrier dysfunction and neuroinflammation after traumatic brain injury. Neurobiol Dis, 145:105080. ![]() [70]WangHM, HuberCC, LiXP, 2023. Mesenchymal and neural stem cell-derived exosomes in treating Alzheimer’s disease. Bioengineering, 10(2):253. ![]() [71]WangJL, ZhaoJH, HuP, et al., 2022. Long non-coding RNA HOTAIR in central nervous system disorders: new insights in pathogenesis, diagnosis, and therapeutic potential. Front Mol Neurosci, 15:949095. ![]() [72]WangK, LiuCY, ZhouLY, et al., 2015. APF lncRNA regulates autophagy and myocardial infarction by targeting miR-188-3p. Nat Commun, 6:6779. ![]() [73]WangL, LiuY, SunSQ, et al., 2016. Regulation of neuronal-glial fate specification by long non-coding RNAs. Rev Neurosci, 27(5):491-499. ![]() [74]WangPH, ChenW, ZhaoS, et al., 2023. The role of LncRNA-regulated autophagy in AKI. BioFactors, 49(5):1010-1021. ![]() [75]WangSS, XuLJ, ZhuKL, et al., 2022. Developing and validating a survival prediction model based on blood exosomal ceRNA network in patients with PAAD. BMC Med Genomics, 15:260. ![]() [76]WuKJ, LiuFL, WuWR, et al., 2019. Long non-coding RNA HOX transcript antisense RNA (HOTAIR) suppresses the angiogenesis of human placentation by inhibiting vascular endothelial growth factor A expression. Reprod Fertil Dev, 31(2):377-385. ![]() [77]WuXM, BianB, LinZF, et al., 2022. Identification of exosomal mRNA, lncRNA and circRNA signatures in an osteoarthritis synovial fluid-exosomal study. Exp Cell Res, 410(1):112881. ![]() [78]XieF, LiuYL, ChenXY, et al., 2020. Role of microRNA, lncRNA, and exosomes in the progression of osteoarthritis: a review of recent literature. Orthop Surg, 12(3):708-716. ![]() [79]XinYB, LinGJ, HuaTB, et al., 2023. The altered expression of cytoskeletal and synaptic remodeling proteins during epilepsy. Open Life Sci, 18(1):20220595. ![]() [80]YamanakaG, TakataF, KataokaY, et al., 2021. The neuroinflammatory role of pericytes in epilepsy. Biomedicines, 9(7):759. ![]() [81]YuQT, ZhangHM, LiY, et al., 2018. UCH-L1 inhibition suppresses tau aggresome formation during proteasomal impairment. Mol Neurobiol, 55(5):3812-3821. ![]() [82]ZengHT, HuFX, DuanY, et al., 2022. Expression of lncRNA APF in peripheral blood of patients with acute myocardial infarction caused by coronary heart disease and its clinical significance. Int Heart J, 63(4):742-748. ![]() [83]ZhangJY, ChenK, TangYX, et al., 2021. LncRNA-HOTAIR activates autophagy and promotes the imatinib resistance of gastrointestinal stromal tumor cells through a mechanism involving the miR-130a/ATG2B pathway. Cell Death Dis, 12(4):367. ![]() [84]ZhangPJ, WuWY, ChenQ, et al., 2019. Non-coding RNAs and their integrated networks. J Integr Bioinform, 16(3):20190027. ![]() [85]ZhaoJY, LiHL, ChangN, 2020. LncRNA hotair promotes MPP+-induced neuronal injury in Parkinson’s disease by regulating the miR-874-5p/ATG10 axis. EXCLI J, 19:1141-1153. ![]() [86]ZhaoYY, LiP, 2022. Strategies of lncRNA DLX6-AS1 on study and therapeutics. Front Genet, 13:871988. ![]() [87]ZimcikovaE, SimkoJ, KaresovaI, et al., 2017. Behavioral effects of antiepileptic drugs in rats: are the effects on mood and behavior detectable in open-field test? Seizure, 52:35-40. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>