CLC number:
On-line Access: 2025-05-28
Received: 2024-07-08
Revision Accepted: 2024-09-13
Crosschecked: 2025-05-29
Cited: 0
Clicked: 908
Citations: Bibtex RefMan EndNote GB/T7714
Jinyou LI, Yue WU, Yichen YANG, Lufang CHEN, Caihong HE, Shixian ZHOU, Shunmei HUANG, Xia ZHANG, Yuming WANG, Qifeng GUI, Haifeng LU, Qin ZHANG, Yunmei YANG. Metagenomics reveals an increased proportion of an Escherichia coli-dominated enterotype in elderly Chinese people[J]. Journal of Zhejiang University Science B,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.B2400341 @article{title="Metagenomics reveals an increased proportion of an Escherichia coli-dominated enterotype in elderly Chinese people", %0 Journal Article TY - JOUR
宏基因组学分析显示大肠杆菌主导的肠型在中国老年人群中比例增加1浙江大学医学院附属第一医院,浙江省理化与增龄损伤性疾病诊治研究重点实验室,中国杭州市,310003 2浙江大学医学院附属第一医院,传染病重症诊治全国重点实验室,中国杭州市,310003 摘要:随着宿主衰老过程中生理环境的衰退,肠道微生态可能发生重塑,但目前对中国高龄人群整体的肠道菌群变异情况的了解尚且有限。为了解析高龄人群肠道微生物组特征,并揭示肠型变异的相关影响因素,本研究采用宏基因组学方法,对367名60至94岁中国老年人进行肠型分析。除了拟杆菌(ET-Bacteroides)和普雷沃氏菌(ET-Prevotella)这两种主导的成人常见肠型外,本研究新发现一种肠杆菌肠型(ET-Escherichia),且其流行率在高龄人群中增加。本研究数据表明,相比2型糖尿病或饮食等已知因素,年龄更能解释肠道菌群的变异。此外,本研究解析了ET-Escherichia肠型独特的分类和功能特征,并发现该肠型具有最低的物种多样性,但最强的微生物共现网络凝聚力和最高的鲁棒性。通过进一步相关性分析发现,大肠埃希菌属细菌的过度增殖与高龄、蔬菜及水果摄入量等因素显著相关。本研究聚焦于中国非健康长寿老人的肠型特征分析,重点阐述了以大肠杆菌富集为主要特征的高龄老人肠型。这些发现为揭示肠道菌群随年龄的变化规律提供了新视角,并强调了基于微生物组特征对老年人群进行分层的重要性。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]AbiaALK, Ubomba-JaswaE, 2019. Dirty money on holy ground: isolation of potentially pathogenic bacteria and fungi on money collected from church offerings. Iran J Public Health, 48(5):849-857. ![]() [2]ArumugamM, RaesJ, PelletierE, et al., 2011. Enterotypes of the human gut microbiome. Nature, 473(7346):174-180. ![]() [3]BaumgartnerM, BayerF, Pfrunder-CardozoKR, et al., 2020. Resident microbial communities inhibit growth and antibiotic-resistance evolution of Escherichia coli in human gut microbiome samples. PLoS Biol, 18(4):e3000465. ![]() [4]ChenLM, CollijV, JaegerM, et al., 2020. Gut microbial co-abundance networks show specificity in inflammatory bowel disease and obesity. Nat Commun, 11:4018. ![]() [5]DaviesM, GalazzoG, van HattemJM, et al., 2022. Enterobacteriaceae and Bacteroidaceae provide resistance to travel-associated intestinal colonization by multi-drug resistant Escherichia coli. Gut Microbes, 14(1):2060676. ![]() [6]DiardM, GarciaV, MaierL, et al., 2013. Stabilization of cooperative virulence by the expression of an avirulent phenotype. Nature, 494(7437):353-356. ![]() [7]FengQ, LiangSS, JiaHJ, et al., 2015. Gut microbiome development along the colorectal adenoma–carcinoma sequence. Nat Commun, 6:6528. ![]() [8]FranzosaEA, McIverLJ, RahnavardG, et al., 2018. Species-level functional profiling of metagenomes and metatranscriptomes. Nat Methods, 15(11):962-968. ![]() [9]GacesaR, KurilshikovA, Vich VilaA, et al., 2022. Environmental factors shaping the gut microbiome in a Dutch population. Nature, 604(7907):732-739. ![]() [10]GhoshTS, ShanahanF, O'ToolePW, 2022. The gut microbiome as a modulator of healthy ageing. Nat Rev Gastroenterol Hepatol, 19(9):565-584. ![]() [11]GhoulM, MitriS, 2016. The ecology and evolution of microbial competition. Trends Microbiol, 24(10):833-845. ![]() [12]HanN, PengXH, ZhangTT, et al., 2024. Rapid turnover and short-term blooms of Escherichia coli in the human gut. J Bacteriol, 206(1):e0023923. ![]() [13]HerrenCM, McMahonKD, 2017. Cohesion: a method for quantifying the connectivity of microbial communities. ISME J, 11(11):2426-2438. ![]() [14]JacksonMA, JefferyIB, BeaumontM, et al., 2016. Signatures of early frailty in the gut microbiota. Genome Med, 8:8. ![]() [15]JiaoS, YangYF, XuYQ, et al., 2020. Balance between community assembly processes mediates species coexistence in agricultural soil microbiomes across Eastern China. ISME J, 14(1):202-216. ![]() [16]KongFL, DengFL, LiY, et al., 2019. Identification of gut microbiome signatures associated with longevity provides a promising modulation target for healthy aging. Gut Microbes, 10(2):210-215. ![]() [17]KuntalBK, ChandrakarP, SadhuS, et al., 2019. ‘NetShift’: a methodology for understanding ‘driver microbes’ from healthy and disease microbiome datasets. ISME J, 13(2):442-454. ![]() [18]LarsonPJ, ZhouW, SantiagoA, et al., 2022. Associations of the skin, oral and gut microbiome with aging, frailty and infection risk reservoirs in older adults. Nat Aging, 2(10):941-955. ![]() [19]LeiteG, PimentelM, BarlowGM, et al., 2022. The small bowel microbiome changes significantly with age and aspects of the ageing process. Microb Cell, 9(1):21-23. ![]() [20]LiL, JingS, TangY, et al., 2024. The effects of food provisioning on the gut microbiota community and antibiotic resistance genes of yunnan snub-nosed monkey. Front Microbiol, 15:1361218. ![]() [21]LingZX, LiuX, ChengYW, et al., 2022. Gut microbiota and aging. Crit Rev Food Sci Nutr, 62(13):3509-3534. ![]() [22]LuppC, RobertsonML, WickhamME, et al., 2007. Host-mediated inflammation disrupts the intestinal microbiota and promotes the overgrowth of enterobacteriaceae. Cell Host Microbe, 2(3):204. ![]() [23]MartinsonJNV, WalkST, 2020. Escherichia coli residency in the gut of healthy human adults. EcoSal Plus, 9(1):10.1128/ecosalplus.ESP-0003-2020. ![]() [24]MartinsonJNV, PinkhamNV, PetersGW, et al., 2019. Rethinking gut microbiome residency and the Enterobacteriaceae in healthy human adults. ISME J, 13(9):2306-2318. ![]() [25]Moreira de Gouveia MI, Bernalier-DonadilleA, JubelinG, 2024. Enterobacteriaceae in the human gut: dynamics and ecological roles in health and disease. Biology, 13(3):142. ![]() [26]MossadO, BatutB, YilmazB, et al., 2022. Gut microbiota drives age-related oxidative stress and mitochondrial damage in microglia via the metabolite N 6-carboxymethyllysine. Nat Neurosci, 25(3):295-305. ![]() [27]MottaweaW, ChiangCK, MühlbauerM, et al., 2016. Altered intestinal microbiota–host mitochondria crosstalk in new onset Crohn’s disease. Nat Commun, 7:13419. ![]() [28]O'ToolePW, JefferyIB, 2015. Gut microbiota and aging. Science, 350(6265):1214-1215. ![]() [29]PalS, JuyalD, AdekhandiS, et al., 2015. Mobile phones: reservoirs for the transmission of nosocomial pathogens. Adv Biomed Res, 4(1):144. ![]() [30]PangSF, ChenXD, LuZL, et al., 2023. Longevity of centenarians is reflected by the gut microbiome with youth-associated signatures. Nat Aging, 3(4):436-449. ![]() [31]QiHB, WeiJM, GaoYH, et al., 2020. Reg4 and complement factor D prevent the overgrowth of E. coli in the mouse gut. Commun Biol, 3:483. ![]() [32]QinJJ, LiYR, CaiZM, et al., 2012. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature, 490(7418):55-60. ![]() [33]Roth-SchulzeAJ, PennoMAS, NguiKM, et al., 2021. Type 1 diabetes in pregnancy is associated with distinct changes in the composition and function of the gut microbiome. Microbiome, 9:167. ![]() [34]SalahshouriP, Emadi-BaygiM, JaliliM, et al., 2021. A metabolic model of intestinal secretions: the link between human microbiota and colorectal cancer progression. Metabolites, 11(7):456 ![]() [35]TanXJ, WangYZ, GongT, 2023. The interplay between oral microbiota, gut microbiota and systematic diseases. J Oral Microbiol, 15(1):2213112. ![]() [36]ThomasAM, ManghiP, AsnicarF, et al., 2019. Metagenomic analysis of colorectal cancer datasets identifies cross-cohort microbial diagnostic signatures and a link with choline degradation. Nat Med, 25(4):667-678. ![]() [37]VogtmannE, HuaX, ZellerG, et al., 2016. Colorectal cancer and the human gut microbiome: reproducibility with whole-genome shotgun sequencing. PLoS ONE, 11(5):e0155362. ![]() [38]WibowoMC, YangZ, BorryM, et al., 2021. Reconstruction of ancient microbial genomes from the human gut. Nature, 594(7862):234-239. ![]() [39]WirbelJ, PylPT, KartalE, et al., 2019. Meta-analysis of fecal metagenomes reveals global microbial signatures that are specific for colorectal cancer. Nat Med, 25(4):679-689. ![]() [40]XiaoLW, WangJF, ZhengJY, et al., 2021. Deterministic transition of enterotypes shapes the infant gut microbiome at an early age. Genome Biol, 22:243. ![]() [41]YachidaS, MizutaniS, ShiromaH, et al., 2019. Metagenomic and metabolomic analyses reveal distinct stage-specific phenotypes of the gut microbiota in colorectal cancer. Nat Med, 25(6):968-976. ![]() [42]YuLL, PanJN, GuoM, et al., 2023. Gut microbiota and anti-aging: focusing on spermidine. Crit Rev Food Sci Nutr, 64(28):10419-10437. ![]() [43]ZellerG, TapJ, VoigtAY, et al., 2014. Potential of fecal microbiota for early-stage detection of colorectal cancer. Mol Syst Biol, 10(11):766. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>