
CLC number:
On-line Access: 2025-12-31
Received: 2025-01-07
Revision Accepted: 2025-03-06
Crosschecked: 2025-12-31
Cited: 0
Clicked: 1592
Citations: Bibtex RefMan EndNote GB/T7714
Yongcong ZHU, Wei CHENG, Yuemin NI, Wuzhong NI. Changes of folate constituents and contents in pakchoi as affected by nitrate to ammonium ratio in nutrient solution under hydroponic conditions[J]. Journal of Zhejiang University Science B,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.B2500011 @article{title="Changes of folate constituents and contents in pakchoi as affected by nitrate to ammonium ratio in nutrient solution under hydroponic conditions", %0 Journal Article TY - JOUR
水培条件下营养液中硝铵比对小白菜叶酸成分及含量变化的影响1浙江大学环境与资源学院, 浙江省农业资源与环境重点实验室, 中国杭州市, 310058 2浙江大学农业试验站, 中国杭州市, 310058 摘要:蔬菜是人类获取叶酸的重要膳食来源。目前,不同氮剂量及形式对植物初级氮代谢(如氨基酸和蛋白质的合成)的影响虽已得到广泛研究,但硝态氮和铵态氮比值对蔬菜中叶酸合成和积累的影响尚不明确。本研究采用水培实验,通过设置六种不同硝铵比例,旨在探究硝铵比例对青菜叶酸组分和含量的影响。结果表明,水培营养液中适宜的硝铵比例能促进青菜生长,并通过提高多聚谷氨酰化5-CHO-THF和多聚谷氨酰化5-CH3-THF含量增加叶酸总含量;相同氮浓度下,供应铵态氮可降低叶酸生物合成相关的酶活性(除叶酰聚谷氨酸合成酶)。统计分析显示,叶酸含量与14种检测到的代谢物(包括果糖、蔗糖、谷氨酰胺、莽草酸、柠檬酸、琥珀酸、苹果酸、α-酮戊二酸、对氨基苯甲酸和6-羟甲基二氢蝶呤二磷酸等)呈显著负相关。这表明,铵态氮能通过加速叶酸前体及中间代谢物的消耗,促进青菜的叶酸生物合成。此外,铵态氮还可通过增加多聚谷氨酰化叶酸,降低γ-谷氨酰水解酶活性进而抑制叶酸的脱谷氨酰化,增强叶酸稳定性。鉴于此,在叶菜类作物水培栽培时,应策略性地选择硝铵比例。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]AkhtarTA, OrsomandoG, MehrshahiP, et al., 2010. A central role for gamma-glutamyl hydrolases in plant folate homeostasis. Plant J, 64(2):256-266. ![]() [2]BaileyLB, 1998. Dietary reference intakes for folate: the debut of dietary folate equivalents. Nutr Rev, 56(10):294-299. ![]() [3]BaileyLB, StoverPJ, McNultyH, et al., 2015. Biomarkers of nutrition for development—folate review. J Nutr, 145(7):1636S-1680S. ![]() [4]BlancquaertD, de SteurH, GellynckX, et al., 2014. Present and future of folate biofortification of crop plants. J Exp Bot, 65(4):895-906. ![]() [5]BlancquaertD, van DaeleJ, StrobbeS, et al., 2015. Improving folate (vitamin B9) stability in biofortified rice through metabolic engineering. Nat Biotechnol, 33(10):1076-1078. ![]() [6]BoschieroBN, MarianoE, AzevedoRA, et al., 2019. Influence of nitrate-ammonium ratio on the growth, nutrition, and metabolism of sugarcane. Plant Physiol Biochem, 139:246-255. ![]() [7]DelchierN, HerbigAL, RychlikM, et al., 2016. Folates in fruits and vegetables: contents, processing, and stability. Compr Rev Food Sci Food Saf, 15(3):506-528. ![]() [8]Díaz de la Garza RI, Ramos-ParraPA, Vidal-LimonHR, 2019. Biofortification of crops with folates: from plant metabolism to table. In: Jaiwal PK, Chhillar AK, Chaudhary D, et al. (Eds.), Nutritional Quality Improvement in Plants. Springer, Cham, p.137-175. ![]() [9]EstebanR, ArizI, CruzC, et al., 2016. Review: mechanisms of ammonium toxicity and the quest for tolerance. Plant Sci, 248:92-101. ![]() [10]US Preventive Services Task Force, 2017. Folic acid supplementation for the prevention of neural tube defects: US Preventive Services Task Force recommendation statement. JAMA, 317(2):183-189. ![]() [11]GaoHD, YueXZ, LiZT, et al., 2023. The molecular regulation of folate accumulation in pakchoi by low intensity white light-emitting diode (LED) illumination. Sci Hortic, 314:111937. ![]() [12]GorelovaV, AmbachL, RébeilléF, et al., 2017. Folates in plants: research advances and progress in crop biofortification. Front Chem, 5:21. ![]() [13]GräwertT, FischerM, BacherA, 2013. Structures and reaction mechanisms of GTP cyclohydrolases. IUBMB Life, 65(4):310-322. ![]() [14]HachiyaT, SakakibaraH, 2017. Interactions between nitrate and ammonium in their uptake, allocation, assimilation, and signaling in plants. J Exp Bot, 68(10):2501-2512. ![]() [15]HansonAD, GregoryIII JF, 2011. Folate biosynthesis, turnover, and transport in plants. Annu Rev Plant Biol, 62:105-125. ![]() [16]HeYN, SongSH, LiC, et al., 2022. Effect of germination on the main chemical compounds and 5-methyltetrahydrofolate metabolism of different quinoa varieties. Food Res Int, 159:111601. ![]() [17]KołtonA, Długosz-GrochowskaO, WojciechowskaR, et al., 2022. Biosynthesis regulation of folates and phenols in plants. Sci Hortic, 291:110561. ![]() [18]KrappA, 2015. Plant nitrogen assimilation and its regulation: a complex puzzle with missing pieces. Curr Opin Plant Biol, 25:115-122. ![]() [19]LeeKT, LiaoHS, HsiehMH, 2023. Glutamine metabolism, sensing and signaling in plants. Plant Cell Physiol, 64(12):1466-1481. ![]() [20]LiWC, LiangQJ, MishraRC, et al., 2021. The 5-formyl-tetrahydrofolate proteome links folates with C/N metabolism and reveals feedback regulation of folate biosynthesis. Plant Cell, 33(10):3367-3385. ![]() [21]LianT, WangXX, LiS, et al., 2022. Comparative transcriptome analysis reveals mechanisms of folate accumulation in maize grains. Int J Mol Sci, 23(3):1708. ![]() [22]LiuY, von WirénN, 2017. Ammonium as a signal for physiological and morphological responses in plants. J Exp Bot, 68(10):2581-2592. ![]() [23]NakamichiY, KobayashiJ, ToyodaK, et al., 2023. Structural basis for the allosteric pathway of 4-amino-4-deoxychorismate synthase. Acta Crystallogr D Struct Biol, 79:895-908. ![]() [24]PatrickJW, BothaFC, BirchRG, 2013. Metabolic engineering of sugars and simple sugar derivatives in plants. Plant Biotechnol J, 11(2):142-156. ![]() [25]Ramos-ParraPA, Urrea-LópezR, Díaz de la Garza RI, 2013. Folate analysis in complex food matrices: use of a recombinant Arabidopsis γ-glutamyl hydrolase for folate deglutamylation. Food Res Int, 54:177-185. ![]() [26]SainiRK, NileSH, KeumYS, 2016. Folates: chemistry, analysis, occurrence, biofortification and bioavailability. Food Res Int, 89:1-13. ![]() [27]ScaglioneF, PanzavoltaG, 2014. Folate, folic acid and 5-methyltetrahydrofolate are not the same thing. Xenobiotica, 44(5):480-488. ![]() [28]TyagiK, SunkumA, GuptaP, et al., 2023. Reduced γ-glutamyl hydrolase activity likely contributes to high folate levels in Periyakulam-1 tomato. Hortic Res, 10:284-296. ![]() [29]WanX, HanLD, YangM, et al., 2019. Simultaneous extraction and determination of mono-/polyglutamyl folates using high-performance liquid chromatography-tandem mass spectrometry and its applications in starchy crops. Anal Bioanal Chem, 411(13):2891-2904. ![]() [30]WangM, ShenQR, XuGH, et al., 2014. New insight into the strategy for nitrogen metabolism in plant cells. Int Rev Cell Mol Biol, 310:1-37. ![]() [31]WangY, WangJS, DongEW, et al., 2023. Foxtail millet [Setaria italica (L.) P. Beauv.] grown under nitrogen deficiency exhibits a lower folate contents. Front Nutr, 10:1035739. ![]() [32]WatanabeS, OhtaniY, TatsukamiY, et al., 2017. Folate biofortification in hydroponically cultivated spinach by the addition of phenylalanine. J Agric Food Chem, 65(23):4605-4610. ![]() [33]XuGH, FanXR, MillerAJ, 2012. Plant nitrogen assimilation and use efficiency. Annu Rev Plant Biol, 63:153-182. ![]() [34]YokoyamaR, KlevenB, GuptaA, et al., 2022. 3-Deoxy-d-arabino-heptulosonate 7-phosphate synthase as the gatekeeper of plant aromatic natural product biosynthesis. Curr Opin Plant Biol, 67:102219. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2026 Journal of Zhejiang University-SCIENCE | ||||||||||||||



ORCID:
Open peer comments: Debate/Discuss/Question/Opinion
<1>