Full Text:  <1420>

Suppl. Mater.: 

Summary:  <67>

CLC number: 

On-line Access: 2026-01-27

Received: 2025-02-09

Revision Accepted: 2025-05-12

Crosschecked: 2026-01-27

Cited: 0

Clicked: 1865

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Haifeng PAN

https://orcid.org/0000-0002-3585-372X

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE  B

Accepted manuscript available online (unedited version)


Improving the thermal stability of trans-epoxysuccinate hydrolase


Author(s):  Wenna BAO, Jinfeng YAO, Haifeng PAN, Ronglin ZHU, Xinying LI, Hongxiu LIAO

Affiliation(s):  School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China; more

Corresponding email(s):  haifengpan518@163.com

Key Words:  trans-Epoxysuccinate hydrolase; Pseudomonas koreana; Molecular dynamics simulation; Thermal stability modification


Share this article to: More <<< Previous Paper|Next Paper >>>

Wenna BAO, Jinfeng YAO, Haifeng PAN, Ronglin ZHU, Xinying LI, Hongxiu LIAO. Improving the thermal stability of trans-epoxysuccinate hydrolase[J]. Journal of Zhejiang University Science B,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.B2500069

@article{title="Improving the thermal stability of trans-epoxysuccinate hydrolase",
author="Wenna BAO, Jinfeng YAO, Haifeng PAN, Ronglin ZHU, Xinying LI, Hongxiu LIAO",
journal="Journal of Zhejiang University Science B",
year="in press",
publisher="Zhejiang University Press & Springer",
doi="https://doi.org/10.1631/jzus.B2500069"
}

%0 Journal Article
%T Improving the thermal stability of trans-epoxysuccinate hydrolase
%A Wenna BAO
%A Jinfeng YAO
%A Haifeng PAN
%A Ronglin ZHU
%A Xinying LI
%A Hongxiu LIAO
%J Journal of Zhejiang University SCIENCE B
%P 89-100
%@ 1673-1581
%D in press
%I Zhejiang University Press & Springer
doi="https://doi.org/10.1631/jzus.B2500069"

TY - JOUR
T1 - Improving the thermal stability of trans-epoxysuccinate hydrolase
A1 - Wenna BAO
A1 - Jinfeng YAO
A1 - Haifeng PAN
A1 - Ronglin ZHU
A1 - Xinying LI
A1 - Hongxiu LIAO
J0 - Journal of Zhejiang University Science B
SP - 89
EP - 100
%@ 1673-1581
Y1 - in press
PB - Zhejiang University Press & Springer
ER -
doi="https://doi.org/10.1631/jzus.B2500069"


Abstract: 
This study used molecular dynamics simulations, B-factor analysis, and saturation mutagenesis screening to enhance the thermal stability of the trans-epoxysuccinate hydrolase (TESH) derived from Pseudomonas koreensis. Eleven mutants that influence this characteristic were selected, yielding four mutants with improved activity. Among them, mutants A142C and S178Q exhibited lower Michaelis constant (Km) values, and their kcat/Km ratios (kcat, catalytic constant) were 3.7 and 0.9 times higher than those of the wild type, respectively. The values of half-life at 50 °C (T1/250) of the two mutants were increased by 107% and 59%, respectively, compared to the wild type. Molecular docking and molecular dynamics simulations indicated that the two mutants showed stronger substrate interaction, lower binding energy, and reduced root mean square deviation compared to the wild type, along with decreased electrostatic potential energy and increased hydrophobicity near their mutation sites. The study of protein thermal stability engineering and associated mechanisms provides a valuable reference and holds practical significance for the industrial production of meso-tartaric acid.

反式环氧琥珀酸水解酶的热稳定性改造

鲍文娜1, 姚锦锋1, 潘海峰2, 朱荣林1, 厉欣颖1, 廖鸿秀1
1浙江科技大学生物与化学工程学院, 中国杭州市, 310023
2湖州学院生命健康学院, 中国湖州市, 313000
摘要:本研究通过运用分子动力学模拟、B因子分析和饱和突变筛选等方法,提高了源自韩国假单胞菌的反式环氧琥珀酸水解酶(TESH)的热稳定性。在筛选出的11个影响该特性的突变体中,4个突变体活性有所提高,其中突变体A142C和S178Q的米氏常数(Km)较低,其kcat(催化常数)/Km比值分别比野生型的高3.7倍和0.9倍。上述两个突变体在50 ℃下的半衰期()值相较野生型分别提高了107%和59%。分子对接和分子动力学模拟表明,与野生型相比,上述两个突变体与底物的相互作用更强,结合能更低,均方根偏差更小,且突变位点附近的静电势能更低,疏水性增强。综上,本研究结果可为内消旋酒石酸的工业化生产提供参考,具有现实意义。

关键词组:反式环氧琥珀酸水解酶;韩国假单胞菌;分子动力学模拟;热稳定性改造

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]ArchelasA, FurstossR, 1998. Epoxide hydrolases: new tools for the synthesis of fine organic chemicals. Trends Biotechnol, 16(3):108-116.

[2]BanXF, XieXF, LiCM, et al., 2021. The desirable salt bridges in amylases: distribution, configuration and location. Food Chem, 354:129475.

[3]BaoWN, PanHF, ZhangZH, et al., 2014. Analysis of essential amino acid residues for catalytic activity of cis-epoxysuccinate hydrolase from Bordetella sp. BK-52. Appl Microbiol Biotechnol, 98(4):1641-1649.

[4]BaoWN, PanHF, ZhangZH, et al., 2015. Isolation of the stable strain Labrys sp. BK-8 for l(+)-tartaric acid production. J Biosci Bioeng, 119(5):538-542.

[5]BhonsleJB, VenugopalD, HuddlerDP, et al., 2007. Application of 3D-QSAR for identification of descriptors defining bioactivity of antimicrobial peptides. J Med Chem, 50(26):6545-6553.

[6]CarugoO, 2022. B-factor accuracy in protein crystal structures. Acta Crystallogr Sect D Struct Biol, 78(1):69-74.

[7]ChengYQ, WangL, PanHF, et al., 2014. Purification and characterization of a novel cis-epoxysuccinate hydrolase from Klebsiella sp. that produces l(+)-tartaric acid. Biotechnol Lett, 36(11):2325-2330.

[8]da FonsecaAM, CaluacoBJ, MadureiraJMC, et al., 2024. Screening of potential inhibitors targeting the main protease structure of SARS-CoV-2 via molecular docking, and approach with molecular dynamics, RMSD, RMSF, H-bond, SASA and MMGBSA. Mol Biotechnol, 66(8):1919-1933.

[9]HanJY, DingYJ, WeiQN, et al., 2024. Expression and characterization of a bifunctional glycoside hydrolase IDSGH5-23 from Ruminococcus albus. J Zhejiang Univ (Agric Life Sci), 50(6):963-972.

[10]HanNY, MaY, MuYL, et al., 2019. Enhancing thermal tolerance of a fungal GH11 xylanase guided by B-factor analysis and multiple sequence alignment. Enzyme Microb Technol, 131:109422.

[11]HendschZS, TidorB, 1994. Do salt bridges stabilize proteins? A continuum electrostatic analysis. Protein Sci, 3(2):211-226.

[12]KamataniY, OkazakiH, ImaiK, et al., 1977. Production of l(+)-tartaric acid. US Patent 4011135A.

[13]LiaoHX, PanHF, YaoJF, et al., 2024. Essential amino acid residues and catalytic mechanism of trans-epoxysuccinate hydrolase for production of meso-tartaric acid. Biotechnol Lett, 46(5):739-749.

[14]PrescherG, SchreyerG, 1979. Process for the production of pure racemic acid and mesotartaric acid and separation of maleic acid from synthetic tartaric acid. US Patent 4150241A.

[15]RosenbergM, MikováH, KrištofíkováL, 1999. Production of l-tartaric acid by immobilized bacterial cells Nocardia Tartaricans. Biotechnol Lett, 21(6):491-495.

[16]SatoE, YanaiA, 1976. Method for preparing d-tartaric acid. US Patent 3957579A.

[17]SakuraK, EstherW, DarshanS, et al., 2023. Genetic resources and precise gene editing for targeted improvement of barley abiotic stress tolerance. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 24(12):1069-1092.

[18]SinhaS, TamB, WangSM, 2022. Applications of molecular dynamics simulation in protein study. Membranes, 12(9):844.

[19]SteinreiberA, FaberK, 2001. Microbial epoxide hydrolases for preparative biotransformations. Curr Opin Biotechnol, 12(6):552-558.

[20]StigterD, AlonsoDO, DillKA, 1991. Protein stability: electrostatics and compact denatured states. Proc Natl Acad Sci USA, 88(10):4176-4180.

[21]SumbalovaL, StouracJ, MartinekT, et al., 2018. HotsPot Wizard 3.0: web server for automated design of mutations and smart libraries based on sequence input information. Nucleic Acids Res, 46(W1):W356-W362.

[22]SunZT, LiuQ, QuG, et al., 2019. Utility of B-factors in protein science: interpreting rigidity, flexibility, and internal motion and engineering thermostability. Chem Rev, 119(3):1626-1665.

[23]TangH, ShiK, ShiC, et al., 2019. Enhancing subtilisin thermostability through a modified normalized B-factor analysis and loop-grafting strategy. J Biol Chem, 294(48):18398-18407.

[24]TaylorWR, 1999. Protein structural domain identification. Protein Eng Des Sel, 12(3):203-216.

[25]WangZQ, WangYS, SuZG, 2013. Purification and characterization of a cis-epoxysuccinic acid hydrolase from Nocardia tartaricans CAS-52, and expression in Escherichia coli. Appl Microbiol Biotechnol, 97(6):2433-2441.

[26]WaterhouseA, BertoniM, BienertS, et al., 2018. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res, 46(W1):W296-W303.

[27]WengJR, YangS, ShenJK, et al., 2023. Molecular dynamics simulation reveals DNA-specific recognition mechanism via c-Myb in pseudo-palindromic consensus of mim-1 promoter. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 24(10):883-895.

[28]ZhangY, GearyT, SimpsonBK, 2019. Genetically modified food enzymes: a review. Curr Opin Food Sci, 25:14-18.

[29]ZhuWL, SunHM, JiangQX, et al., 2022. Enhancing the thermal stability of glutathione bifunctional synthase by B-factor strategy and un/folding free energy calculation. Catalysts, 12(12):1649.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2026 Journal of Zhejiang University-SCIENCE