
CLC number:
On-line Access: 2026-01-27
Received: 2025-02-09
Revision Accepted: 2025-05-12
Crosschecked: 2026-01-27
Cited: 0
Clicked: 1865
Wenna BAO, Jinfeng YAO, Haifeng PAN, Ronglin ZHU, Xinying LI, Hongxiu LIAO. Improving the thermal stability of trans-epoxysuccinate hydrolase[J]. Journal of Zhejiang University Science B,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.B2500069 @article{title="Improving the thermal stability of trans-epoxysuccinate hydrolase", %0 Journal Article TY - JOUR
反式环氧琥珀酸水解酶的热稳定性改造1浙江科技大学生物与化学工程学院, 中国杭州市, 310023 2湖州学院生命健康学院, 中国湖州市, 313000 摘要:本研究通过运用分子动力学模拟、B因子分析和饱和突变筛选等方法,提高了源自韩国假单胞菌的反式环氧琥珀酸水解酶(TESH)的热稳定性。在筛选出的11个影响该特性的突变体中,4个突变体活性有所提高,其中突变体A142C和S178Q的米氏常数(Km)较低,其kcat(催化常数)/Km比值分别比野生型的高3.7倍和0.9倍。上述两个突变体在50 ℃下的半衰期()值相较野生型分别提高了107%和59%。分子对接和分子动力学模拟表明,与野生型相比,上述两个突变体与底物的相互作用更强,结合能更低,均方根偏差更小,且突变位点附近的静电势能更低,疏水性增强。综上,本研究结果可为内消旋酒石酸的工业化生产提供参考,具有现实意义。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]ArchelasA, FurstossR, 1998. Epoxide hydrolases: new tools for the synthesis of fine organic chemicals. Trends Biotechnol, 16(3):108-116. ![]() [2]BanXF, XieXF, LiCM, et al., 2021. The desirable salt bridges in amylases: distribution, configuration and location. Food Chem, 354:129475. ![]() [3]BaoWN, PanHF, ZhangZH, et al., 2014. Analysis of essential amino acid residues for catalytic activity of cis-epoxysuccinate hydrolase from Bordetella sp. BK-52. Appl Microbiol Biotechnol, 98(4):1641-1649. ![]() [4]BaoWN, PanHF, ZhangZH, et al., 2015. Isolation of the stable strain Labrys sp. BK-8 for l(+)-tartaric acid production. J Biosci Bioeng, 119(5):538-542. ![]() [5]BhonsleJB, VenugopalD, HuddlerDP, et al., 2007. Application of 3D-QSAR for identification of descriptors defining bioactivity of antimicrobial peptides. J Med Chem, 50(26):6545-6553. ![]() [6]CarugoO, 2022. B-factor accuracy in protein crystal structures. Acta Crystallogr Sect D Struct Biol, 78(1):69-74. ![]() [7]ChengYQ, WangL, PanHF, et al., 2014. Purification and characterization of a novel cis-epoxysuccinate hydrolase from Klebsiella sp. that produces l(+)-tartaric acid. Biotechnol Lett, 36(11):2325-2330. ![]() [8]da FonsecaAM, CaluacoBJ, MadureiraJMC, et al., 2024. Screening of potential inhibitors targeting the main protease structure of SARS-CoV-2 via molecular docking, and approach with molecular dynamics, RMSD, RMSF, H-bond, SASA and MMGBSA. Mol Biotechnol, 66(8):1919-1933. ![]() [9]HanJY, DingYJ, WeiQN, et al., 2024. Expression and characterization of a bifunctional glycoside hydrolase IDSGH5-23 from Ruminococcus albus. J Zhejiang Univ (Agric Life Sci), 50(6):963-972. ![]() [10]HanNY, MaY, MuYL, et al., 2019. Enhancing thermal tolerance of a fungal GH11 xylanase guided by B-factor analysis and multiple sequence alignment. Enzyme Microb Technol, 131:109422. ![]() [11]HendschZS, TidorB, 1994. Do salt bridges stabilize proteins? A continuum electrostatic analysis. Protein Sci, 3(2):211-226. ![]() [12]KamataniY, OkazakiH, ImaiK, et al., 1977. Production of l(+)-tartaric acid. US Patent 4011135A. ![]() [13]LiaoHX, PanHF, YaoJF, et al., 2024. Essential amino acid residues and catalytic mechanism of trans-epoxysuccinate hydrolase for production of meso-tartaric acid. Biotechnol Lett, 46(5):739-749. ![]() [14]PrescherG, SchreyerG, 1979. Process for the production of pure racemic acid and mesotartaric acid and separation of maleic acid from synthetic tartaric acid. US Patent 4150241A. ![]() [15]RosenbergM, MikováH, KrištofíkováL, 1999. Production of l-tartaric acid by immobilized bacterial cells Nocardia Tartaricans. Biotechnol Lett, 21(6):491-495. ![]() [16]SatoE, YanaiA, 1976. Method for preparing d-tartaric acid. US Patent 3957579A. ![]() [17]SakuraK, EstherW, DarshanS, et al., 2023. Genetic resources and precise gene editing for targeted improvement of barley abiotic stress tolerance. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 24(12):1069-1092. ![]() [18]SinhaS, TamB, WangSM, 2022. Applications of molecular dynamics simulation in protein study. Membranes, 12(9):844. ![]() [19]SteinreiberA, FaberK, 2001. Microbial epoxide hydrolases for preparative biotransformations. Curr Opin Biotechnol, 12(6):552-558. ![]() [20]StigterD, AlonsoDO, DillKA, 1991. Protein stability: electrostatics and compact denatured states. Proc Natl Acad Sci USA, 88(10):4176-4180. ![]() [21]SumbalovaL, StouracJ, MartinekT, et al., 2018. HotsPot Wizard 3.0: web server for automated design of mutations and smart libraries based on sequence input information. Nucleic Acids Res, 46(W1):W356-W362. ![]() [22]SunZT, LiuQ, QuG, et al., 2019. Utility of B-factors in protein science: interpreting rigidity, flexibility, and internal motion and engineering thermostability. Chem Rev, 119(3):1626-1665. ![]() [23]TangH, ShiK, ShiC, et al., 2019. Enhancing subtilisin thermostability through a modified normalized B-factor analysis and loop-grafting strategy. J Biol Chem, 294(48):18398-18407. ![]() [24]TaylorWR, 1999. Protein structural domain identification. Protein Eng Des Sel, 12(3):203-216. ![]() [25]WangZQ, WangYS, SuZG, 2013. Purification and characterization of a cis-epoxysuccinic acid hydrolase from Nocardia tartaricans CAS-52, and expression in Escherichia coli. Appl Microbiol Biotechnol, 97(6):2433-2441. ![]() [26]WaterhouseA, BertoniM, BienertS, et al., 2018. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res, 46(W1):W296-W303. ![]() [27]WengJR, YangS, ShenJK, et al., 2023. Molecular dynamics simulation reveals DNA-specific recognition mechanism via c-Myb in pseudo-palindromic consensus of mim-1 promoter. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 24(10):883-895. ![]() [28]ZhangY, GearyT, SimpsonBK, 2019. Genetically modified food enzymes: a review. Curr Opin Food Sci, 25:14-18. ![]() [29]ZhuWL, SunHM, JiangQX, et al., 2022. Enhancing the thermal stability of glutathione bifunctional synthase by B-factor strategy and un/folding free energy calculation. Catalysts, 12(12):1649. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2026 Journal of Zhejiang University-SCIENCE | ||||||||||||||



ORCID:
Open peer comments: Debate/Discuss/Question/Opinion
<1>