
CLC number:
On-line Access: 2025-10-21
Received: 2025-02-23
Revision Accepted: 2025-04-10
Crosschecked: 2025-10-21
Cited: 0
Clicked: 1518
Citations: Bibtex RefMan EndNote GB/T7714
Yangqing SHAO, Yitong ZHANG, Wenxuan ZHU, Huasong LU. Biomolecular condensates in Hippo pathway regulation[J]. Journal of Zhejiang University Science B,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.B2500092 @article{title="Biomolecular condensates in Hippo pathway regulation", %0 Journal Article TY - JOUR
相分离凝聚体在Hippo信号通路中的调控作用浙江大学生命科学研究院,全省癌症分子生物学重点实验室,中国杭州市,310058 摘要:Hippo信号通路作为一条高度保守的细胞信号转导途径,在细胞增殖和凋亡、器官大小发育以及组织再生等生物学过程中发挥着重要作用。该信号通路主要通过激酶级联反应,调控转录共激活因子YAP和TAZ的活性,进而影响下游靶基因表达。相关研究表明,YAP/TAZ在细胞核内可通过相分离机制形成凝聚体进而促进基因转录,但上述凝聚体的形成机制和动态调控过程尚不清楚。本文系统总结了相分离调控Hippo信号通路的最新研究进展,并重点介绍了YAP/TAZ凝聚体的转录调控功能。此外,本文还讨论了利用新型化学交联剂结合质谱技术解析TAZ凝聚体的互作网络,并发现FUS蛋白能够动态调控TAZ凝聚体的物质属性,即可通过维持其自身的液态流动性以促进TAZ的转录活性和促肿瘤发生的功能。相关研究的发现不仅加深了对Hippo信号通路调控机制的理解,也为YAP/TAZ活性失调相关疾病的靶向治疗提供了新的理论依据和潜在干预策略。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]AbbasM, LipińskiWP, NakashimaKK, et al., 2021. A short peptide synthon for liquid–liquid phase separation. Nat Chem, 13(11):1046-1054. ![]() [2]AlbertiS, DormannD, 2019. Liquid–liquid phase separation in disease. Annu Rev Genet, 53:171-194. ![]() [3]AlbertiS, GladfelterA, MittagT, 2019. Considerations and challenges in studying liquid–liquid phase separation and biomolecular condensates. Cell, 176(3):419-434. ![]() [4]BananiSF, LeeHO, HymanAA, et al., 2017. Biomolecular condensates: organizers of cellular biochemistry. Nat Rev Mol Cell Biol, 18(5):285-298. ![]() [5]BoeynaemsS, AlbertiS, FawziNL, et al., 2018. Protein phase separation: a new phase in cell biology. Trends Cell Biol, 28(6):420-435. ![]() [6]BoijaA, KleinIA, YoungRA, 2021. Biomolecular condensates and cancer. Cancer Cell, 39(2):174-192. ![]() [7]BonelloTT, CaiDF, FletcherGC, et al., 2023. Phase separation of Hippo signalling complexes. EMBO J, 42(6):e112863. ![]() [8]CaiDF, FelicianoD, DongP, et al., 2019. Phase separation of YAP reorganizes genome topology for long-term YAP target gene expression. Nat Cell Biol, 21(12):1578-1589. ![]() [9]CheXL, WuJJ, LiuH, et al., 2023. Cellular liquid–liquid phase separation: concept, functions, regulations, and detections. J Cell Physiol, 238(5):847-865. ![]() [10]ChungCI, YangJJ, YangXY, et al., 2024. Phase separation of YAP-MAML2 differentially regulates the transcriptome. Proc Natl Acad Sci USA, 121(7):e2310430121. ![]() [11]ConicellaAE, ZerzeGH, MittalJ, et al., 2016. ALS mutations disrupt phase separation mediated by α-helical structure in the TDP-43 low-complexity C-terminal domain. Structure, 24(9):1537-1549. ![]() [12]DongJX, FeldmannG, HuangJB, et al., 2007. Elucidation of a universal size-control mechanism in Drosophila and mammals. Cell, 130(6):1120-1133. ![]() [13]FrattiniC, PromonetA, AlghoulE, et al., 2021. TopBP1 assembles nuclear condensates to switch on ATR signaling. Mol Cell, 81(6):1231-1245.e8. ![]() [14]FuMY, HuY, LanTX, et al., 2022. The Hippo signalling pathway and its implications in human health and diseases. Signal Transduct Target Ther, 7:376. ![]() [15]GagliaG, RashidR, YappC, et al., 2020. HSF1 phase transition mediates stress adaptation and cell fate decisions. Nat Cell Biol, 22(2):151-158. ![]() [16]GinellGM, HolehouseAS, 2023. An introduction to the stickers-and-spacers framework as applied to biomolecular condensates. In: Zhou HX, Spille JH, Banerjee PR (Eds.), Phase-Separated Biomolecular Condensates. Methods in Molecular Biology, Humana, New York, 2563:95-116. ![]() [17]GuJG, WangC, HuRR, et al., 2021. Hsp70 chaperones TDP-43 in dynamic, liquid-like phase and prevents it from amyloid aggregation. Cell Res, 31(9):1024-1027. ![]() [18]GuoPF, LiB, WEID, et al., 2024. PI4P-mediated solid-like Merlin condensates orchestrate Hippo pathway regulation. Science, 385(6709):eadf4478. ![]() [19]HarveyKF, PflegerCM, HariharanIK, 2003. The Drosophila mst ortholog, hippo, restricts growth and cell proliferation and promotes apoptosis. Cell, 114(4):457-467. ![]() [20]HongWJ, GuanKL, 2012. The YAP and TAZ transcription co-activators: key downstream effectors of the mammalian Hippo pathway. Semin Cell Dev Biol, 23(7):785-793. ![]() [21]HuXH, WuXP, BerryK, et al., 2023. Nuclear condensates of YAP fusion proteins alter transcription to drive ependymoma tumourigenesis. Nat Cell Biol, 25(2):323-336. ![]() [22]HymanAA, WeberCA, JülicherF, 2014. Liquid–liquid phase separation in biology. Annu Rev Cell Dev Biol, 30:39-58. ![]() [23]JiaZX, YangSX, LiMY, et al., 2022. A novel NF2 splicing mutant causes neurofibromatosis type 2 via liquid–liquid phase separation with large tumor suppressor and Hippo pathway. iScience, 25(11):105275. ![]() [24]JusticeRW, ZilianO, WoodsDF, et al., 1995. The Drosophila tumor suppressor gene warts encodes a homolog of human myotonic dystrophy kinase and is required for the control of cell shape and proliferation. Genes Dev, 9(5):534-546. ![]() [25]KimHJ, KimNC, WangYD, et al., 2013. Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS. Nature, 495:467-473. ![]() [26]LiFL, GuanKL, 2022. The two sides of Hippo pathway in cancer. Semin Cancer Biol, 85:33-42. ![]() [27]LiRH, TianT, GeQW, et al., 2021. A phosphatidic acid-binding lncRNA SNHG9 facilitates LATS1 liquid–liquid phase separation to promote oncogenic YAP signaling. Cell Res, 31(10):1088-1105. ![]() [28]LiW, HuJ, ShiB, et al., 2020. Biophysical properties of AKAP95 protein condensates regulate splicing and tumorigenesis. Nat Cell Biol, 22(8):960-972. ![]() [29]LinSY, HeXY, WangY, et al., 2024. Emerging role of lncRNAs as mechanical signaling molecules in mechanotransduction and their association with Hippo-YAP signaling: a review. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 25(4):280-292. ![]() [30]LiuJY, WangJ, LiuYQ, et al., 2023. Liquid–liquid phase separation of DDR1 counteracts the Hippo pathway to orchestrate arterial stiffening. Circ Res, 132(1):87-105. ![]() [31]LiuQX, LiJX, ZhangWJ, et al., 2021. Glycogen accumulation and phase separation drives liver tumor initiation. Cell, 184(22):5559-5576.e19. ![]() [32]LiuZY, ZhangSN, GuJG, et al., 2020. Hsp27 chaperones FUS phase separation under the modulation of stress-induced phosphorylation. Nat Struct Mol Biol, 27(4):363-372. ![]() [33]LuS, HuJJ, ArogundadeOA, et al., 2022. Heat-shock chaperone HSPB1 regulates cytoplasmic TDP-43 phase separation and liquid-to-gel transition. Nat Cell Biol, 24(9):1378-1393. ![]() [34]LuY, WuTT, GutmanO, et al., 2020. Phase separation of TAZ compartmentalizes the transcription machinery to promote gene expression. Nat Cell Biol, 22(4):453-464. ![]() [35]MaSH, MengZP, ChenR, et al., 2019. The Hippo pathway: biology and pathophysiology. Annu Rev Biochem, 88:577-604. ![]() [36]MarkmillerS, SoltaniehS, ServerKL, et al., 2018. Context-dependent and disease-specific diversity in protein interactions within stress granules. Cell, 172(3):590-604.e13. ![]() [37]MartinEW, HolehouseAS, PeranI, et al., 2020. Valence and patterning of aromatic residues determine the phase behavior of prion-like domains. Science, 367(6478):694-699. ![]() [38]MengZP, MoroishiT, GuanKL, 2016. Mechanisms of Hippo pathway regulation. Genes Dev, 30(1):1-17. ![]() [39]MittagT, PappuRV, 2022. A conceptual framework for understanding phase separation and addressing open questions and challenges. Mol Cell, 82(12):2201-2214. ![]() [40]MurakamiT, QamarS, LinJQ, et al., 2015. ALS/FTD mutation-induced phase transition of FUS liquid droplets and reversible hydrogels into irreversible hydrogels impairs RNP granule function. Neuron, 88(4):678-690. ![]() [41]MurthyAC, DignonGL, KanY, et al., 2019. Molecular interactions underlying liquid–liquid phase separation of the FUS low-complexity domain. Nat Struct Mol Biol, 26(7):637-648. ![]() [42]NairSJ, YangL, MeluzziD, et al., 2019. Phase separation of ligand-activated enhancers licenses cooperative chromosomal enhancer assembly. Nat Struct Mol Biol, 26(3):193-203. ![]() [43]QinM, GengES, WangJN, et al., 2024. LATS2 condensates organize signalosomes for Hippo pathway signal transduction. Nat Chem Biol, 20(6):710-720. ![]() [44]ShaoYQ, ShuX, LuY, et al., 2024. A chaperone-like function of FUS ensures TAZ condensate dynamics and transcriptional activation. Nat Cell Biol, 26:86-99. ![]() [45]ShiB, LiW, SongYS, et al., 2021. UTX condensation underlies its tumour-suppressive activity. Nature, 597:726-731. ![]() [46]SunYM, ZhuSX, ChenXT, et al., 2024. LncRNAs maintain the functional phase state of nucleolar prion-like protein to facilitate rRNA processing. Mol Cell, 84(24):4878-4895.e10. ![]() [47]WangL, ChoiK, SuT, et al., 2022. Multiphase coalescence mediates Hippo pathway activation. Cell, 185(23):4376-4393.e18. ![]() [48]WeiYJ, LuoHC, YeePP, et al., 2021. Paraspeckle protein NONO promotes TAZ phase separation in the nucleus to drive the oncogenic transcriptional program. Adv Sci (Weinh), 8(24):2102653. ![]() [49]XuT, WangWY, ZhangS, et al., 1995. Identifying tumor suppressors in genetic mosaics: the Drosophila lats gene encodes a putative protein kinase. Development, 121(4):1053-1063. ![]() [50]YuFX, GuanKL, 2013. The Hippo pathway: regulators and regulations. Genes Dev, 27(4):355-371. ![]() [51]YuFX, ZhaoB, GuanKL, 2015. Hippo pathway in organ size control, tissue homeostasis, and cancer. Cell, 163(4):811-828. ![]() [52]YuHY, LuS, GasiorK, et al., 2021. HSP70 chaperones RNA-free TDP-43 into anisotropic intranuclear liquid spherical shells. Science, 371(6529):eabb4309. ![]() [53]YuM, PengZX, QinM, et al., 2021. Interferon-γ induces tumor resistance to anti-PD-1 immunotherapy by promoting YAP phase separation. Mol Cell, 81(6):1216-1230.e9. ![]() [54]ZhangH, JiX, LiPL, et al., 2020. Liquid–liquid phase separation in biology: mechanisms, physiological functions and human diseases. Sci China Life Sci, 63(7):953-985. ![]() [55]ZhongZX, JiaoZH, YuFX, 2024. The Hippo signaling pathway in development and regeneration. Cell Rep, 43(3):113926. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2026 Journal of Zhejiang University-SCIENCE | ||||||||||||||


ORCID:
Open peer comments: Debate/Discuss/Question/Opinion
<1>