
CLC number:
On-line Access: 2025-10-21
Received: 2025-07-30
Revision Accepted: 2025-09-14
Crosschecked: 2025-10-21
Cited: 0
Clicked: 874
Citations: Bibtex RefMan EndNote GB/T7714
Yuli SHEN, Yuqian ZHAO, Xue SUN, Guimei JI, Daqian XU, Zheng WANG. Circadian genes CLOCK and BMAL1 in cancer: mechanistic insights and therapeutic strategies[J]. Journal of Zhejiang University Science B,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.B2500455 @article{title="Circadian genes CLOCK and BMAL1 in cancer: mechanistic insights and therapeutic strategies", %0 Journal Article TY - JOUR
昼夜节律基因CLOCK与BMAL1在癌症中的作用:机制解析与治疗策略1浙江大学医学院附属第一医院, 浙江省胰腺疾病重点实验室, 转化医学研究院, 中国杭州市, 310029 2浙江大学癌症中心, 中国杭州市, 310029 3哈尔滨医科大学附属肿瘤医院肿瘤外科, 中国哈尔滨市, 150081 4浙江大学基础与交叉学科研究院, 中国杭州市, 310029 摘要:昼夜节律时钟作为生物体中高度保守的时间维持系统,可通过精确调控基因表达的周期性波动维持机体生理稳态。大量临床与实验证据表明,昼夜节律紊乱与多种恶性肿瘤的发生发展密切相关。研究显示,肿瘤组织中存在昼夜节律基因表达谱的特征性改变,主要表现为核心时钟元件(特别是CLOCK与BMAL1)的功能失调及其下游靶基因的广泛调控异常。值得注意的是,CLOCK基因展现出非经典致癌功能,包括通过组蛋白乙酰转移酶活性进行表观遗传调控,以及对癌症通路实施不依赖于昼夜节律的调控作用。本文系统阐述了CLOCK/BMAL1介导的致癌机制,涵盖细胞周期调控、DNA损伤应答、代谢重编程及肿瘤微环境重塑等多维度效应。在治疗策略方面,本文重点关注时序营养干预、节律药理学调控及治疗方案优化等前沿方向,并对未来发展前景进行展望。本文聚焦的研究突破不仅加深了我们对昼夜节律调控在癌症生物学中重要作用的理解,更为时序治疗肿瘤学的发展提供了新视角,尤其是通过靶向昼夜节律蛋白的非经典功能来开发创新的抗癌策略。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]AlhopuroP, BjörklundM, SammalkorpiH, et al., 2010. Mutations in the circadian gene CLOCK in colorectal cancer. Mol Cancer Res, 8(7):952-960. ![]() [2]Amiama-RoigA, Verdugo-SivianesEM, CarneroA, et al., 2022. Chronotherapy: circadian rhythms and their influence in cancer therapy. Cancers, 14(20):5071. ![]() [3]BoivinDB, BoudreauP, 2014. Impacts of shift work on sleep and circadian rhythms. Pathol Biol, 62(5):292-301. ![]() [4]BurgermeisterE, BattaglinF, EladlyF, et al., 2019. Aryl hydrocarbon receptor nuclear translocator-like (ARNTL/BMAL1) is associated with bevacizumab resistance in colorectal cancer via regulation of vascular endothelial growth factor A. eBioMedicine, 45:139-154. ![]() [5]ChanP, NagaiY, WuQL, et al., 2025. Advancing clinical response against glioblastoma: evaluating SHP1705 CRY2 activator efficacy in preclinical models and safety in phase I trials. Neuro-Oncol, 27(7):1772-1786. ![]() [6]ChenPW, HsuWH, ChangA, et al., 2020. Circadian regulator CLOCK recruits immune-suppressive microglia into the GBM tumor microenvironment. Cancer Discov, 10(3):371-381. ![]() [7]ChoH, ZhaoX, HatoriM, et al., 2012. Regulation of circadian behaviour and metabolism by REV-ERB-α and REV-ERB-β. Nature, 485(7396):123-127. ![]() [8]Cotta-RamusinoC, McDonaldER III, HurovK, et al., 2011. A DNA damage response screen identifies RHINO, a 9-1-1 and TopBP1 interacting protein required for ATR signaling. Science, 332(6035):1313-1317. ![]() [9]CurtisAM, BelletMM, Sassone-CorsiP, et al., 2014. Circadian clock proteins and immunity. Immunity, 40(2):178-186. ![]() [10]DamatoAR, LuoJQ, KatumbaRGN, et al., 2021. Temozolomide chronotherapy in patients with glioblastoma: a retrospective single-institute study. Neuro-Oncol Adv, 3(1):vdab041. ![]() [11]DongZ, ZhangGX, QuM, et al., 2019. Targeting glioblastoma stem cells through disruption of the circadian clock. Cancer Discov, 9(11):1556-1573. ![]() [12]DorukYU, YarparvarD, AkyelYK, et al., 2020. A CLOCK-binding small molecule disrupts the interaction between CLOCK and BMAL1 and enhances circadian rhythm amplitude. J Biol Chem, 295(11):3518-3531. ![]() [13]DuongHA, RoblesMS, KnuttiD, et al., 2011. A molecular mechanism for circadian clock negative feedback. Science, 332(6036):1436-1439. ![]() [14]ElhananiO, Ben-UriR, KerenL, 2023. Spatial profiling technologies illuminate the tumor microenvironment. Cancer Cell, 41(3):404-420. ![]() [15]FagianiF, di MarinoD, RomagnoliA, et al., 2022. Molecular regulations of circadian rhythm and implications for physiology and diseases. Signal Transduct Target Ther, 7:41. ![]() [16]Fang GF, Chen QY, Li JL,et al., 2024 The diurnal transcriptome reveals the reprogramming of lung adenocarcinoma cells under a time-restricted feeding-mimicking regimen. J Nutr, 154(2):354-368. ![]() [17]FarshadiE, YanJ, LeclereP, et al., 2019. The positive circadian regulators CLOCK and BMAL1 control G2/M cell cycle transition through Cyclin B1. Cell Cycle, 18(1):16-33. ![]() [18]FortinBM, PfeifferSM, Insua-RodríguezJ, et al., 2024. Circadian control of tumor immunosuppression affects efficacy of immune checkpoint blockade. Nat Immunol, 25(7):1257-1269. ![]() [19]FortinBM, MahieuAL, FellowsRC, et al., 2025. The diverse roles of the circadian clock in cancer. Nat Cancer, 6(5):753-767. ![]() [20]FuhrL, El-AthmanR, ScrimaR, et al., 2018. The circadian clock regulates metabolic phenotype rewiring via HKDC1 and modulates tumor progression and drug response in colorectal cancer. eBioMedicine, 33:105-121. ![]() [21]GaucherJ, MontellierE, Sassone-CorsiP, 2018. Molecular cogs: interplay between circadian clock and cell cycle. Trends Cell Biol, 28(5):368-379. ![]() [22]GotohT, Vila-CaballerM, SantosCS, et al., 2014. The circadian factor Period 2 modulates p53 stability and transcriptional activity in unstressed cells. Mol Biol Cell, 25(19):3081-3093. ![]() [23]GrabeS, AnanthasubramaniamB, HerzelH, 2024. Quantification of circadian rhythms in mammalian lung tissue snapshot data. Sci Rep, 14:16238. ![]() [24]HanZY, ZhangC, AnJX, et al., 2025. Directly evolved nanovaccines modulate disrupted circadian rhythm and enhance cancer immunotherapy. Adv Mater, 37(34):2502602. ![]() [25]HanahanD, 2022. Hallmarks of cancer: new dimensions. Cancer Discov, 12(1):31-46. ![]() [26]HeBK, NoharaK, ParkN, et al., 2016. The small molecule nobiletin targets the molecular oscillator to enhance circadian rhythms and protect against metabolic syndrome. Cell Metab, 23(4):610-621. ![]() [27]HuangLH, HuangCY, LiuYW, et al., 2024. Circadian rhythm disruption in hepatocellular carcinoma investigated by integrated analysis of bulk and single-cell RNA sequencing data. Int J Mol Sci, 25(11):5748. ![]() [28]HuangN, ChelliahY, ShanYL, et al., 2012. Crystal structure of the heterodimeric CLOCK:BMAL1 transcriptional activator complex. Science, 337(6091):189-194. ![]() [29]JiangWL, ZhaoSL, JiangXH, et al., 2016. The circadian clock gene Bmal1 acts as a potential anti-oncogene in pancreatic cancer by activating the p53 tumor suppressor pathway. Cancer Lett, 371(2):314-325. ![]() [30]KamalIR, El-AttySMA, El-ZoghdySF, et al., 2025. Intelligent deep learning model for targeted cancer drug delivery. Sci Rep, 15:19068. ![]() [31]KiesslingS, Beaulieu-LarocheL, BlumID, et al., 2017. Enhancing circadian clock function in cancer cells inhibits tumor growth. BMC Biol, 15:13. ![]() [32]KimDW, MayerC, LeeMP, et al., 2023. Efficient assessment of real-world dynamics of circadian rhythms in heart rate and body temperature from wearable data. J Roy Soc Interface, 20(205):20230030. ![]() [33]LeungC, GérardC, GonzeD, 2023. Modeling the circadian control of the cell cycle and its consequences for cancer chronotherapy. Biology, 12(4):612. ![]() [34]LéviFA, OkyarA, HadadiE, et al., 2024. Circadian regulation of drug responses: toward sex-specific and personalized chronotherapy. Annu Rev Pharmacol Toxicol, 64:89-114. ![]() [35]LiMD, 2022. Clock-modulated checkpoints in time-restricted eating. Trends Mol Med, 28(1):25-35. ![]() [36]LiuJL, XuX, RixiatiY, et al., 2024. Dysfunctional circadian clock accelerates cancer metastasis by intestinal microbiota triggering accumulation of myeloid-derived suppressor cells. Cell Metab, 36(6):1320-1334.e9. ![]() [37]LiuT, WangZ, YeLG, et al., 2023. Nucleus-exported CLOCK acetylates PRPS to promote de novo nucleotide synthesis and liver tumour growth. Nat Cell Biol, 25(2):273-284. ![]() [38]LongoVD, PandaS, 2016. Fasting, circadian rhythms, and time-restricted feeding in healthy lifespan. Cell Metab, 23(6):1048-1059. ![]() [39]MaYR, RenX, PatelN, et al., 2020. Nobiletin, a citrus polymethoxyflavone, enhances the effects of bicalutamide on prostate cancer cells via down regulation of NF-κB, STAT3, and ERK activation. RSC Adv, 10(17):10254-10262. ![]() [40]MikiT, MatsumotoT, ZhaoZY, et al., 2013. p53 regulates Period2 expression and the circadian clock. Nat Commun, 4:2444. ![]() [41]MureLS, LeHD, BenegiamoG, et al., 2018. Diurnal transcriptome atlas of a primate across major neural and peripheral tissues. Science, 359(6381):eaao0318. ![]() [42]NegriniS, GorgoulisVG, HalazonetisTD, 2010. Genomic instability — an evolving hallmark of cancer. Nat Rev Mol Cell Biol, 11(3):220-228. ![]() [43]NguyenKD, FentressSJ, QiuYF, et al., 2013. Circadian gene Bmal1 regulates diurnal oscillations of Ly6Chi inflammatory monocytes. Science, 341(6153):1483-1488. ![]() [44]Ortega-CamposSM, Verdugo-SivianesEM, Amiama-RoigA, et al., 2023. Interactions of circadian clock genes with the hallmarks of cancer. Biochim Biophys Acta Rev Cancer, 1878(3):188900. ![]() [45]PangLZ, DuntermanM, XuanWJ, et al., 2023. Circadian regulator CLOCK promotes tumor angiogenesis in glioblastoma. Cell Rep, 42(2):112127. ![]() [46]PapagiannakopoulosT, BauerMR, DavidsonSM, et al., 2016. Circadian rhythm disruption promotes lung tumorigenesis. Cell Metab, 24(2):324-331. ![]() [47]PatkeA, YoungMW, AxelrodS, 2020. Molecular mechanisms and physiological importance of circadian rhythms. Nat Rev Mol Cell Biol, 21(2):67-84. ![]() [48]PavlovaNN, ThompsonCB, 2016. The emerging hallmarks of cancer metabolism. Cell Metab, 23(1):27-47. ![]() [49]PengF, LuJX, SuKY, et al., 2024. Oncogenic fatty acid oxidation senses circadian disruption in sleep-deficiency-enhanced tumorigenesis. Cell Metab, 36(7):1598-1618.e11. ![]() [50]PuH, BaileyLC, BauerLG, et al., 2025. Pharmacological targeting of BMAL1 modulates circadian and immune pathways. Nat Chem Biol, 21(5):736-745. ![]() [51]QiGY, GuoR, TianHY, et al., 2018. Nobiletin protects against insulin resistance and disorders of lipid metabolism by reprogramming of circadian clock in hepatocytes. Biochim Biophys Acta Mol Cell Biol Lipids, 1863(6):549-562. ![]() [52]QuM, ZhangGX, QuH, et al., 2023. Circadian regulator BMAL1::CLOCK promotes cell proliferation in hepatocellular carcinoma by controlling apoptosis and cell cycle. Proc Natl Acad Sci USA, 120(2):e2214829120. ![]() [53]QuailDF, JoyceJA, 2013. Microenvironmental regulation of tumor progression and metastasis. Nat Med, 19(11):1423-1437. ![]() [54]QueirozJDN, MacedoRCO, TinsleyGM, et al., 2021. Time-restricted eating and circadian rhythms: the biological clock is ticking. Crit Rev Food Sci Nutr, 61(17):2863-2875. ![]() [55]RippergerJA, SchiblerU, 2006. Rhythmic CLOCK-BMAL1 binding to multiple E-box motifs drives circadian Dbp transcription and chromatin transitions. Nat Genet, 38(3):369-374. ![]() [56]SancarA, van GelderRN, 2021. Clocks, cancer, and chronochemotherapy. Science, 371(6524):eabb0738. ![]() [57]SancarA, Lindsey-BoltzLA, KangTH, et al., 2010. Circadian clock control of the cellular response to DNA damage. FEBS Lett, 584(12):2618-2625. ![]() [58]SchraderLA, Ronnekleiv-KellySM, HogeneschJB, et al., 2024. Circadian disruption, clock genes, and metabolic health. J Clin Invest, 134(14):e170998. ![]() [59]ShiD, FangGF, ChenQY, et al., 2023. Six-hour time-restricted feeding inhibits lung cancer progression and reshapes circadian metabolism. BMC Med, 21:417. ![]() [60]SlatEA, SponagelJ, MarpeganL, et al., 2017. Cell-intrinsic, Bmal1-dependent circadian regulation of temozolomide sensitivity in glioblastoma. J Biol Rhythms, 32(2):121-129. ![]() [61]SulliG, ManoogianENC, TaubPR, et al., 2018. Training the circadian clock, clocking the drugs, and drugging the clock to prevent, manage, and treat chronic diseases. Trends Pharmacol Sci, 39(9):812-827. ![]() [62]Terzibasi-TozziniE, Martinez-NicolasA, Lucas-SánchezA, 2017. The clock is ticking. Ageing of the circadian system: from physiology to cell cycle. Semin Cell Dev Biol, 70:164-176. ![]() [63]WangC, ZengQ, GülZM, et al., 2024. Circadian tumor infiltration and function of CD8+ T cells dictate immunotherapy efficacy. Cell, 187(11):2690-2702.e17. ![]() [64]WangYP, QianRZ, SunN, et al., 2015. Circadian gene hClock enhances proliferation and inhibits apoptosis of human colorectal carcinoma cells in vitro and in vivo. Mol Med Rep, 11(6):4204-4210. ![]() [65]WangYP, SunN, LuC, et al., 2017. Upregulation of circadian gene ‘hClock’ contribution to metastasis of colorectal cancer. Int J Oncol, 50(6):2191-2199. ![]() [66]WangZ, MaLN, MengY, et al., 2024. The interplay of the circadian clock and metabolic tumorigenesis. Trends Cell Biol, 34(9):742-755. ![]() [67]WeiT, ChengY, GeJR, et al., 2025. The pro-apoptotic effect of glucose restriction in NSCLC via AMPK-regulated circadian clock gene Bmal1. Cancer Sci, 116(8):2101-2112. ![]() [68]WuDL, RastinejadF, 2017. Structural characterization of mammalian bHLH-PAS transcription factors. Curr Opin Struct Biol, 43:1-9. ![]() [69]WuDL, SuXY, PotluriN, et al., 2016. NPAS1-ARNT and NPAS3-ARNT crystal structures implicate the bHLH-PAS family as multi-ligand binding transcription factors. eLife, 5:e18790. ![]() [70]WuYC, TaoBR, ZhangTY, et al., 2019. Pan-cancer analysis reveals disrupted circadian clock associates with T cell exhaustion. Front Immunol, 10:2451. ![]() [71]XuDQ, ShaoF, BianXL, et al., 2021. The evolving landscape of noncanonical functions of metabolic enzymes in cancer and other pathologies. Cell Metab, 33(1):33-50. ![]() [72]XuanWJ, KhanF, JamesCD, et al., 2021. Circadian regulation of cancer cell and tumor microenvironment crosstalk. Trends Cell Biol, 31(11):940-950. ![]() [73]XuanWJ, HsuWH, KhanF, et al., 2022. Circadian regulator CLOCK drives immunosuppression in glioblastoma. Cancer Immunol Res, 10(6):770-784. ![]() [74]YipHYK, PapaA, 2021. Signaling pathways in cancer: therapeutic targets, combinatorial treatments, and new developments. Cells, 10(3):659. ![]() [75]YooSH, MohawkJA, SiepkaSM, et al., 2013. Competing E3 ubiquitin ligases govern circadian periodicity by degradation of CRY in nucleus and cytoplasm. Cell, 152(5):1091-1105. ![]() [76]ZengYE, GuoZC, WuMQ, et al., 2024. Circadian rhythm regulates the function of immune cells and participates in the development of tumors. Cell Death Discov, 10:199. ![]() [77]ZengZL, LuoHY, YangJ, et al., 2014. Overexpression of the circadian clock gene Bmal1 increases sensitivity to oxaliplatin in colorectal cancer. Clin Cancer Res, 20(4):1042-1052. ![]() [78]ZhangCF, ChenLP, SunL, et al., 2023. BMAL1 collaborates with CLOCK to directly promote DNA double-strand break repair and tumor chemoresistance. Oncogene, 42(13):967-979. ![]() [79]ZhangR, LahensNF, BallanceHI, et al., 2014. A circadian gene expression atlas in mammals: implications for biology and medicine. Proc Natl Acad Sci USA, 111(45):16219-16224. ![]() [80]ZhangZ, ZengPH, GaoWH, et al., 2021. Circadian clock: a regulator of the immunity in cancer. Cell Commun Signal, 19:37. ![]() [81]ZhouL, ZhangZ, NiceE, et al., 2022. Circadian rhythms and cancers: the intrinsic links and therapeutic potentials. J Hematol Oncol, 15:21. ![]() [82]ZhuYF, ZhengY, DaiRY, et al., 2025. Crosstalk between circadian rhythm dysregulation and tumorigenesis, tumor metabolism and tumor immune response. Aging Dis, 16(4):2073-2099. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2026 Journal of Zhejiang University-SCIENCE | ||||||||||||||


ORCID:
Open peer comments: Debate/Discuss/Question/Opinion
<1>