CLC number: TN912; TP391.4
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2014-06-19
Cited: 6
Clicked: 14505
Xian Zang, Felipe P. Vista Iv, Kil To Chong. Fast global kernel fuzzy c-means clustering algorithm for consonant/vowel segmentation of speech signal[J]. Journal of Zhejiang University Science C,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.C1300320 @article{title="Fast global kernel fuzzy c-means clustering algorithm for consonant/vowel segmentation of speech signal", %0 Journal Article TY - JOUR
语音信号辅音/元音分割的快速全局模糊c均值聚类算法创新方法:传统的模糊c均值方法(FCM)有两个缺点:对初始值要求严格,无法处理非线性分割数据。通过使用基于核的模糊c均值聚类法(KFCM-F)作为本地搜索方法,采用渐进方法获得近乎最优的结果,这种方法的渐进性和KFCM-F的非线性,可以避免FCM的两个缺点。研究手段:使用KFCM-F处理数据,在不显著影响实验结果的情况下,设计了一个加速计划以降低计算复杂度。采用非线性人工数据组和现实数据组作为语音信号,进行辅音/元音分割,以检测这种新算法的性能。 重要结论:KFCM-F方法巧妙地避免了传统FCM方法的两个缺点。我们设计的算法(FGKFCM-F)继承了KFCM-F和全局模糊c均值方法(GFCM)的优点,得以实现基于非线性分割数据组的近乎最优解。此外,我们设计的加速计划大大降低了整个计算的复杂度。实验结果证实,FGKFCM-F比其他方法更适合处理人工和现实数据。 模糊c均值聚类法;核方法;全局优化;辅音/元音分割 Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Bagirov, A.M., 2008. Modified global k-means algorithm for minimum sum-of-squares clustering problems. Pattern Recogn., 41(10):3192-3199. ![]() [2]Balasko, B., Abonyi, J., Feil, B., 2005. Fuzzy Clustering and Data Analysis Toolbox. Department of Process Engineering, University of Veszprem, Veszprem. ![]() [3]Bezdek, J.C., 1981. Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press, New York. ![]() [4]Bozkir, A.S., Sezer, E.A., 2013. FUAT—a fuzzy clustering analysis tool. Expert Syst. Appl., 40(3):842-849. ![]() [5]Chiang, J.H., Hao, P.Y., 2003. A new kernel-based fuzzy clustering approach: support vector clustering with cell growing. IEEE Trans. Fuzzy Syst., 11(4):518-527. ![]() [6]Cover, T.M., 1965. Geometrical and statistical properties of systems of linear inequalities with applications in pattern recognition. IEEE Trans. Electr. Comput., EC-14(3):326-334. ![]() [7]Duda, R.O., Hart, P.E., 1973. Pattern Classification and Scene Analysis. Wiley, New York. ![]() [8]Dunn, J.C., 1973. A fuzzy relative of the isodata process and its use in detecting compact well-separated clusters. J. Cybern., 3(3):32-57. ![]() [9]Filippone, M., Camastra, F., Masulli, F., et al., 2008. A survey of kernel and spectral methods for clustering. Pattern Recogn., 41(1):176-190. ![]() [10]Girolami, M., 2002. Mercer kernel-based clustering in feature space. IEEE Trans. Neur. Netw., 13(3):780-784. ![]() [11]Gong, M., Su, L., Jia, M., et al., 2014. Fuzzy clustering with a modified MRF energy function for change detection in synthetic aperture radar images. IEEE Trans. Fuzzy Syst., 22(1):98-109. ![]() [12]Hu, Y., Wu, D., Nucci, A., 2013. Fuzzy-clustering-based decision tree approach for large population speaker identification. IEEE Trans. Audio Speech Lang. Process., 21(4):762-774. ![]() [13]Jain, A.K., Murty, M.N., Flynn, P.J., 1999. Data clustering: a review. ACM Comput. Surv., 31(3):264-323. ![]() [14]Jamaati, M., Marvi, H., 2008. Performance assessment of joint feature derived from Mellin-cepstrum for vowel recognition. Int. Rev. Electr. Eng. IREE, 3(6):1077-1086. ![]() [15]Kim, D.W., Lee, K.Y., Lee, D., et al., 2005. Evaluation of the performance of clustering algorithms in kernel-induced feature space. Pattern Recogn., 38(4):607-611. ![]() [16]Li, Z., Tang, S., Xue, J., et al., 2001. Modified FCM clustering based on kernel mapping. Multispectral Image Processing and Pattern Recognition, International Society for Optics and Photonics, p.241-245. ![]() [17]Likas, A., Vlassis, N., Verbeek, J.J., 2003. The global k-means clustering algorithm. Pattern Recogn., 36(2):451-461. ![]() [18]Liu, C., Zhang, X., Li, X., et al., 2012. Gaussian kernelized fuzzy c-means with spatial information algorithm for image segmentation. J. Comput., 7(6):1511-1518. ![]() [19]Mercer, J., 1909. Functions of positive and negative type, and their connection with the theory of integral equations. Phil. Trans. R. Soc. Lond. Ser. A, 209(441-458):415-446. ![]() [20]Muller, K., Mika, S., Ratsch, G., et al., 2001. An introduction to kernel-based learning algorithms. IEEE Trans. Neur. Netw., 12(2):181-201. ![]() [21]Nguyen, T.M., Wu, Q.M.J., 2013. Dynamic fuzzy clustering and its application in motion segmentation. IEEE Trans. Fuzzy Syst., 21(6):1019-1031. ![]() [22]Picone, J.W., 1993. Signal modeling techniques in speech recognition. Proc. IEEE, 81(9):1215-1247. ![]() [23]Shen, H.B., Yang, J., Wang, S.T., et al., 2006. Attribute weighted Mercer kernel based fuzzy clustering algorithm for general non-spherical datasets. Soft Comput., 10(11):1061-1073. ![]() [24]Tsai, D.M., Lin, C.C., 2011. Fuzzy c-means based clustering for linearly and nonlinearly separable data. Pattern Recogn., 44(8):1750-1760. ![]() [25]Wang, W., Zhang, Y., Li, Y., et al., 2006. The global fuzzy c-means clustering algorithm. 6th World Congress on Intelligent Control and Automation, p.3604-3607. ![]() [26]Wu, Z., Xie, W., Yu, J., 2003. Fuzzy c-means clustering algorithm based on kernel method. Proc. 5th Int. Conf. on Computational Intelligence and Multimedia Applications, p.49-54. ![]() [27]Xu, R., Wunsch, D., 2005. Survey of clustering algorithms. IEEE Trans. Neur. Netw., 16(3):645-678. ![]() [28]Yang, M.S., Tsai, H.S., 2008. A Gaussian kernel-based fuzzy c-means algorithm with a spatial bias correction. Pattern Recogn. Lett., 29(12):1713-1725. ![]() [29]Yu, C.Y., Li, Y., Liu, A.L., et al., 2011. A novel modified kernel fuzzy c-means clustering algorithm on image segementation. IEEE 14th Int. Conf. on Computational Science and Engineering, p.621-626. ![]() [30]Zadeh, L.A., 1965. Fuzzy sets. Inf. Contr., 8(3):338-353. ![]() [31]Zhang, D.Q., Chen, S.C., 2002. Fuzzy clustering using kernel method. Int. Conf. on Control and Automation, p.162-163. ![]() [32]Zhang, D.Q., Chen, S.C., 2003a. Clustering incomplete data using kernel-based fuzzy c-means algorithm. Neur. Process. Lett., 18(3):155-162. ![]() [33]Zhang, D.Q., Chen, S.C., 2003b. Kernel-based fuzzy and possibilistic c-means clustering. Proc. Int. Conf. on Artificial Neural Network, p.122-125. ![]() [34]Zhang, D.Q., Chen, S.C., 2004. A novel kernelized fuzzy c-means algorithm with application in medical image segmentation. Artif. Intell. Med., 32(1):37-50. ![]() [35]Zhao, F., 2013. Fuzzy clustering algorithms with self-tuning non-local spatial information for image segmentation. Neurocomputing, 106:115-125. ![]() [36]Zhou, S., Gan, J.Q., 2004. Mercer kernel, fuzzy c-means algorithm, and prototypes of clusters. LNCS, 3177:613-618. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>