CLC number: TP301
On-line Access: 2025-02-10
Received: 2024-03-12
Revision Accepted: 2024-04-01
Crosschecked: 2025-02-18
Cited: 0
Clicked: 1360
Citations: Bibtex RefMan EndNote GB/T7714
Yinhong XIANG, Kaiqing ZHOU, Arezoo SARKHEYLI-HGELE, Yusliza YUSOFF, Diwen KANG, Azlan Mohd ZAIN. Parallel fault diagnosis using hierarchical fuzzy Petri net by reversible and dynamic decomposition mechanism[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.2400184 @article{title="Parallel fault diagnosis using hierarchical fuzzy Petri net by reversible and dynamic decomposition mechanism", %0 Journal Article TY - JOUR
基于可逆和动态分解机制的层次化FPN并行故障诊断康棣文1,Azlan Mohd ZAIN3 1吉首大学通信与电子工程学院,中国吉首市,416000 2马尔默大学计算机科学与媒体技术系物联网与人联网研究中心,瑞典马尔默,20506 3马来西亚理工大学信息处理技术学院,马来西亚士古来,81310 摘要:与Petri网类似,模糊Petri网(fuzzy Petri net, FPN)的研究同样受到状态空间爆炸问题的限制。目前,基于FPN的推理算法主要依赖于正向、反向和双向等机制。这些算法通过消除FPN中不相关的部分来简化推理过程。然而,随着规模的扩大,基于FPN的相关应用算法的复杂度迅速增加,这给基于FPN的推理算法的实际应用带来重大挑战。为解决状态爆炸问题,本文提出一种基于可逆和动态分解机制的FPN双向推理算法,以优化推理过程。该算法将层次化后的FPN分解为左右两个子网;然后,深入分析FPN原网与其逆网元素之间的对应关系,提出FPN逆网生成算法,用于生成右子网的逆网;最后,在左子网与右子网的逆网上同时执行推理算法,通过计算两子网输出位置之间的欧式距离得到最终结果。案例表明,本文提出的推理算法显著提高了推理效率,大幅缩短了执行时间。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Bai KY, Jia D, Meng WY, et al., 2023. Q-rung orthopair fuzzy Petri nets for knowledge representation and reasoning. IEEE Access, 11:93560-93573. ![]() [2]Chen RH, Yang B, Li S, et al., 2020. A self-learning genetic algorithm based on reinforcement learning for flexible job-shop scheduling problem. Comput Ind Eng, 149:106778. ![]() [3]Chen SM, 2000. Fuzzy backward reasoning using fuzzy Petri nets. IEEE Trans Syst Man Cybern Part B (Cybern), 30(6):846-856. ![]() [4]Chen SM, 2002. Weighted fuzzy reasoning using weighted fuzzy Petri nets. IEEE Trans Knowl Data Eng, 14(2):386-397. ![]() [5]Chen XH, Zhang BK, Gao D, 2021. Bearing fault diagnosis base on multi-scale CNN and LSTM model. J Intell Manuf, 32(4):971-987. ![]() [6]Gao MM, Zhou MC, Huang XG, et al., 2003. Fuzzy reasoning Petri nets. IEEE Trans Syst Man Cybern Part A Syst Hum, 33(3):314-324. ![]() [7]Grobelna I, Karatkevich A, 2021. Challenges in application of Petri nets in manufacturing systems. Electronics, 10(18):2305. ![]() [8]Hu HS, Li ZW, Al-Ahmari A, 2011. Reversed fuzzy Petri nets and their application for fault diagnosis. Comput Ind Eng, 60(4):505-510. ![]() [9]Jiang W, Zhou KQ, Sarkheyli-Hägele A, et al., 2022. Modeling, reasoning, and application of fuzzy Petri net model: a survey. Artif Intell Rev, 55(8):6567-6605. ![]() [10]Lakos C, Petrucci L, 2011. Modular state spaces for prioritised Petri nets. In: Calinescu R, Jackson E (Eds.), Foundations of Computer Software. Springer, Berlin, Heidelberg, p.136-156. ![]() [11]Lei YG, Yang B, Jiang XW, et al., 2020. Applications of machine learning to machine fault diagnosis: a review and roadmap. Mech Syst Signal Process, 138:106587. ![]() [12]Liu HC, Lin QL, Ren ML, 2013. Fault diagnosis and cause analysis using fuzzy evidential reasoning approach and dynamic adaptive fuzzy Petri nets. Comput Ind Eng, 66(4):899-908. ![]() [13]Liu HC, You JX, Li ZW, et al., 2017. Fuzzy Petri nets for knowledge representation and reasoning: a literature review. Eng Appl Artif Intell, 60:45-56. ![]() [14]Liu HC, Luan X, Zhou MC, et al., 2022. A new linguistic Petri net for complex knowledge representation and reasoning. IEEE Trans Knowl Data Eng, 34(3):1011-1020. ![]() [15]Mou X, Mao LX, Liu HC, et al., 2022. Spherical linguistic Petri nets for knowledge representation and reasoning under large group environment. IEEE Trans Artif Intell, 3(3):402-413. ![]() [16]Nishi T, Matsumoto I, 2015. Petri net decomposition approach to deadlock-free and non-cyclic scheduling of dual-armed cluster tools. IEEE Trans Autom Sci Eng, 12(1):281-294. ![]() [17]Rudin C, 2019. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat Mach Intell, 1(5):206-215. ![]() [18]Russell SJ, Norvig P, 2009. Artificial Intelligence: a Modern Approach (3rd Ed). Prentice Hall Press, Upper Saddle River, USA. ![]() [19]Salum L, 2015. Avoiding state explosion in a class of Petri nets. Expert Syst Appl, 42(1):519-526. ![]() [20]Seatzu C, 2019. Modeling, analysis, and control of automated manufacturing systems using Petri nets. Proc 24th IEEE Int Conf on Emerging Technologies and Factory Automation, p.27-30. ![]() [21]Shen VRL, Chung YF, Chen SM, et al., 2013. A novel reduction approach for Petri net systems based on matching theory. Expert Syst Appl, 40(11):4562-4576. ![]() [22]Shi H, Liu HC, Wang JH, et al., 2022. New linguistic Z-number Petri nets for knowledge acquisition and representation under large group environment. Int J Fuzzy Syst, 24(8):3483-3500. ![]() [23]Shi H, Yu YX, Liu R, et al., 2024. Probabilistic linguistic Petri nets for knowledge representation and acquisition with dynamic consensus reaching process. IEEE Trans Fuzzy Syst, 32(4):2198-2210. ![]() [24]Valmari A, 1998. The state explosion problem. In: Reisig W, Rozenberg G (Eds.), Lectures on Petri Nets I: Basic Models. Springer, Berlin, Heidelberg, p.429-528. ![]() [25]Wang XL, Lu FM, Zhou MC, et al., 2022. A synergy-effect-incorporated fuzzy Petri net modeling paradigm with application in risk assessment. Expert Syst Appl, 199:117037. ![]() [26]Xiang YH, Zhou KQ, Yang SY, et al., 2023. Hierarchical algorithm of fuzzy Petri net by reverse search. J Comput Appl, 43(12):3676-3682 (in Chinese). ![]() [27]Yang X, 2023. Performance analysis of Petri net based on moment generating function. J Intell Fuzzy Syst, 45(1):1131-1139. ![]() [28]Ye SQ, Zhou KQ, Zain AM, et al., 2023. A modified harmony search algorithm and its applications in weighted fuzzy production rule extraction. Front Inform Technol Electron Eng, 24(11):1574-1590. ![]() [29]Yeung DS, Ysang ECC, 1998. A multilevel weighted fuzzy reasoning algorithm for expert systems. IEEE Trans Syst Man Cybern Part A Syst Hum, 28(2):149-158. ![]() [30]Yu YX, Gong HP, Liu HC, et al., 2023. Knowledge representation and reasoning using fuzzy Petri nets: a literature review and bibliometric analysis. Artif Intell Rev, 56(7):6241-6265. ![]() [31]Yuan J, Shi HB, Liu C, et al., 2008. Improved basic inference models of fuzzy Petri nets. Proc 7th World Congress on Intelligent Control and Automation, p.1488-1493. ![]() [32]Zaitsev DA, 2004. Decomposition of Petri nets. Cybern Syst Anal, 40(5):739-746. ![]() [33]Zeng RF, Jiang YX, Lin C, et al., 2012. Dependability analysis of control center networks in smart grid using stochastic petri nets. IEEE Trans Parall Distrib Syst, 23(9):1721-1730. ![]() [34]Zhou KQ, Zain AM, 2016. Fuzzy Petri nets and industrial applications: a review. Artif Intell Rev, 45(4):405-446. ![]() [35]Zhou KQ, Zain AM, Mo LP, 2015a. A decomposition algorithm of fuzzy Petri net using an index function and incidence matrix. Expert Syst Appl, 42(8):3980-3990. ![]() [36]Zhou KQ, Zain AM, Mo LP, 2015b. Dynamic properties of fuzzy Petri net model and related analysis. J Cent South Univ, 22(12):4717-4723. ![]() [37]Zhou KQ, Gui WH, Mo LP, et al., 2018. A bidirectional diagnosis algorithm of fuzzy Petri net using inner–reasoning–path. Symmetry, 10(6):192. ![]() [38]Zhou KQ, Mo LP, Jin J, et al., 2019. An equivalent generating algorithm to model fuzzy Petri net for knowledge-based system. J Intell Manuf, 30(4):1831-1842. ![]() [39]Ziani R, Felkaoui A, Zegadi R, 2017. Bearing fault diagnosis using multiclass support vector machines with binary particle swarm optimization and regularized Fisher’s criterion. J Intell Manuf, 28(2):405-417. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>