CLC number:
On-line Access: 2023-06-20
Received: 2022-12-28
Revision Accepted: 2022-01-21
Crosschecked: 2023-09-20
Cited: 0
Clicked: 516
Pei Yi SIOW, Zhi Chao ONG, Shin Yee KHOO, Kok-Sing LIM. Noise robustness of an operational modal-based structural damage-detection scheme using impact-synchronous modal analysis[J]. Journal of Zhejiang University Science A,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.A2200620 @article{title="Noise robustness of an operational modal-based structural damage-detection scheme using impact-synchronous modal analysis", %0 Journal Article TY - JOUR
使用冲击同步模态分析的基于运行模态的结构损伤检测方案的噪声鲁棒性机构:1马来亚大学,工程学院机械工程系,马来西亚吉隆坡,50603;2马来亚大学,副校长(研究与创新)办公室,光子学研究中心,马来西亚吉隆坡,50603 目的:来自环境或外部来源的噪声,如风、运行中的机器或来自在役系统本身的噪声,如果不加以注意或处理,会降低模态数据对损伤的敏感性,从而影响损伤检测的准确性。为了生成用于损伤诊断的干净、类静态频率响应函数(FRF),本研究提出了一种使用冲击同步模态分析(ISMA)的基于噪声鲁棒操作模态的结构损伤检测方案。 创新点:结合ISMA、主成分分析(PCA)-FRF和基于无监督学习的方法对运行结构的损伤检测进行去噪和提取对损伤敏感的主要特征。 方法:所提出的损伤检测方案的总体框架包括三个阶段:1.首先使用ISMA对信号进行去噪,以生成仅包含结构动态信息的干净FRF。2.应用PCA清理FRF,生成的前两个主成分用于构造单线PCA-FRF,提取PCA-FRF的峰作为无监督的特征基于机器学习的损伤检测。3.采用无监督机器学习k-means算法进行损伤检测。邓恩指数用作损坏指标,当邓恩指数超过基线/未损坏的邓恩指数时,就会检测到损坏。 结论:结果表明,与在静态条件下通过实验模态分析(EMA)获得的FRF相比,通过ISMA在噪声条件下获得的FRF具有大于0.9的频率响应保证准则(FRAC)和交叉签名保证准则(CSAC)分数,这验证了ISMA的去噪功能。当去噪的FRF减少到PCA-FRF并用于无监督的基于学习的损伤检测方案时,显示零误报。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]BandaraRP, ChanTHT, ThambiratnamDP, 2014. Frequency response function based damage identification using principal component analysis and pattern recognition technique. Engineering Structures, 66:116-128. ![]() [2]BokaeianV, KhoshnoudianF, FallahianM, 2021. Structural damage detection in plates using a deep neural network-couple sparse coding classification ensemble method. Journal of Vibration and Control, 27(3-4):437-450. ![]() [3]BouzenadAE, El MountassirM, YaacoubiS, et al., 2019. A semi-supervised based k-means algorithm for optimal guided waves structural health monitoring: a case study. Inventions, 4(1):17. ![]() [4]BrownjohnJMW, XiaPQ, HaoH, et al., 2001. Civil structure condition assessment by FE model updating: methodology and case studies. Finite Elements in Analysis and Design, 37(10):761-775. ![]() [5]ChenSL, OngZC, LamWH, et al., 2020. Unsupervised damage identification scheme using PCA-reduced frequency response function and waveform chain code analysis. International Journal of Structural Stability and Dynamics, 20(8):2050091. ![]() [6]ChenW, JinMS, HuangJS, et al., 2021. A method to distinguish harmonic frequencies and remove the harmonic effect in operational modal analysis of rotating structures. Mechanical Systems and Signal Processing, 161:107928. ![]() [7]DaneshvarMH, SarmadiH, 2022. Unsupervised learning-based damage assessment of full-scale civil structures under long-term and short-term monitoring. Engineering Structures, 256:114059. ![]() [8]DasS, RoyK, 2022. A state-of-the-art review on FRF-based structural damage detection: development in last two decades and way forward. International Journal of Structural Stability and Dynamics, 22(2):2230001. ![]() [9]ElyasiN, KhoshnoudianF, KhoshnoudianY, 2019. A new damage index for isolated structures. International Journal of Structural Stability and Dynamics, 19(6):1950055. ![]() [10]EntezamiA, ShariatmadarH, 2018. An unsupervised learning approach by novel damage indices in structural health monitoring for damage localization and quantification. Structural Health Monitoring, 17(2):325-345. ![]() [11]FavarelliE, TestiE, GiorgettiA, 2022. The impact of sensing parameters on data management and anomaly detection in structural health monitoring. Journal of Civil Structural Health Monitoring, 12(6):1413-1425. ![]() [12]FleetT, KameiK, HeFY, et al., 2020. A machine learning approach to model interdependencies between dynamic response and crack propagation. Sensors, 20(23):6847. ![]() [13]FotiD, GiannoccaroNI, VaccaV, et al., 2020. Structural operativity evaluation of strategic buildings through finite element (FE) models validated by operational modal analysis (OMA). Sensors, 20(11):3252. ![]() [14]Garcia-PerezA, Amezquita-SanchezJP, Dominguez-GonzalezA, et al., 2013. Fused empirical mode decomposition and wavelets for locating combined damage in a truss-type structure through vibration analysis. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 14(9):615-630. ![]() [15]GillichN, TufisiC, SacareaC, et al., 2022. Beam damage assessment using natural frequency shift and machine learning. Sensors, 22(3):1118. ![]() [16]GordanM, IsmailZ, RazakHA, et al., 2020a. Data mining-based damage identification of a slab-on-girder bridge using inverse analysis. Measurement, 151:107175. ![]() [17]GordanM, RazakHA, IsmailZ, et al., 2020b. A hybrid ANN-based imperial competitive algorithm methodology for structural damage identification of slab-on-girder bridge using data mining. Applied Soft Computing, 88:106013. ![]() [18]JayasundaraN, ThambiratnamDP, ChanTHT, et al., 2020. Locating and quantifying damage in deck type arch bridges using frequency response functions and artificial neural networks. International Journal of Structural Stability and Dynamics, 20(10):2042010. ![]() [19]KangJ, LiuL, ShaoYP, et al., 2021. Non-stationary signal decomposition approach for harmonic responses detection in operational modal analysis. Computers & Structures, 242:106377. ![]() [20]KhoshnoudianF, TalaeiS, 2017. A new damage index using FRF data, 2D-PCA method and pattern recognition techniques. International Journal of Structural Stability and Dynamics, 17(8):1750090. ![]() [21]KimJJ, KimAR, LeeSW, 2020. Artificial neural network-based automated crack detection and analysis for the inspection of concrete structures. Applied Sciences, 10(22):8105. ![]() [22]KouadriA, HajjiM, HarkatMF, et al., 2020. Hidden Markov model based principal component analysis for intelligent fault diagnosis of wind energy converter systems. Renewable Energy, 150:598-606. ![]() [23]KumarK, BiswasPK, DhangN, 2020. Time series-based SHM using PCA with application to ASCE benchmark structure. Journal of Civil Structural Health Monitoring, 10(5):899-911. ![]() [24]LimHC, OngZC, BrandtA, 2018. Implementation of phase controlled impact device for enhancement of frequency response function in operational modal testing. Journal of the Franklin Institute, 355(1):291-313. ![]() [25]LimHC, OngZC, IsmailZ, et al., 2019. A performance study of controlled impact timing on harmonics reduction in operational modal testing. Journal of Dynamic Systems, Measurement, and Control, 141(3):034501. ![]() [26]LiuJH, KizakiT, RenZW, et al., 2022. Mode shape database-based estimation for machine tool dynamics. International Journal of Mechanical Sciences, 236:107739. ![]() [27]LydonD, KromanisR, LydonM, et al., 2022. Use of a roving computer vision system to compare anomaly detection techniques for health monitoring of bridges. Journal of Civil Structural Health Monitoring, 12(6):1299-1316. ![]() [28]MaZS, DingQ, TangY, 2020. Operational modal analysis of a liquid-filled cylindrical structure with decreasing filling mass by multivariate stochastic parameter evolution methods. International Journal of Mechanical Sciences, 172:105420 ![]() [29]ManochandarS, PunniyamoorthyM, JeyachitraRK, 2020. Development of new seed with modified validity measures for k-means clustering. Computers & Industrial Engineering, 141:106290 ![]() [30]MaoJX, YangCY, WangH, et al., 2022. Bayesian operational modal analysis with genetic optimization for structural health monitoring of the long-span bridge. International Journal of Structural Stability and Dynamics, 22(5):2250051. ![]() [31]NickH, AziminejadA, 2021. Vibration-based damage identification in steel girder bridges using artificial neural network under noisy conditions. Journal of Nondestructive Evaluation, 40(1):15. ![]() [32]OngZC, LimHC, KhooSY, et al., 2017. Assessment of the phase synchronization effect in modal testing during operation. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 18(2):92-105. ![]() [33]OngZC, LimHC, BrandtA, 2018. Automated impact device with non-synchronous impacts: a practical solution for modal testing during operation. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 19(6):452-460. ![]() [34]OngZC, LimHC, BrandtA, et al., 2019. An inconsistent phase selection assessment for harmonic peaks elimination in operational modal testing. Archive of Applied Mechanics, 89(12):2415-2430. ![]() [35]OzdagliAI, KoutsoukosX, 2019. Machine learning based novelty detection using modal analysis. Computer-Aided Civil and Infrastructure Engineering, 34(12):1119-1140. ![]() [36]PadilKH, BakharyN, AbdulkareemM, et al., 2020. Non-probabilistic method to consider uncertainties in frequency response function for vibration-based damage detection using artificial neural network. Journal of Sound and Vibration, 467:115069. ![]() [37]RahmanAGA, ChaoOZ, IsmailZ, 2011a. Effectiveness of impact-synchronous time averaging in determination of dynamic characteristics of a rotor dynamic system. Measurement, 44(1):34-45. ![]() [38]RahmanAGA, OngZC, IsmailZ, 2011b. Enhancement of coherence functions using time signals in modal analysis. Measurement, 44(10):2112-2123. ![]() [39]SantosJP, CrémonaC, CaladoL, et al., 2016. On-line unsupervised detection of early damage. Structural Control and Health Monitoring, 23(7):1047-1069. ![]() [40]SarmadiH, EntezamiA, SalarM, et al., 2021. Bridge health monitoring in environmental variability by new clustering and threshold estimation methods. Journal of Civil Structural Health Monitoring, 11(3):629-644. ![]() [41]ShinK, 2016. An alternative approach to measure similarity between two deterministic transient signals. Journal of Sound and Vibration, 371:434-445. ![]() [42]SiowPY, OngZC, KhooSY, et al., 2021. Damage sensitive PCA-FRF feature in unsupervised machine learning for damage detection of plate-like structures. International Journal of Structural Stability and Dynamics, 21(2):2150028. ![]() [43]SolimineJ, NiezreckiC, InalpolatM, 2020. An experimental investigation into passive acoustic damage detection for structural health monitoring of wind turbine blades. Structural Health Monitoring, 19(6):1711-1725. ![]() [44]SvendsenBT, FrøsethGT, ØisethO, et al., 2022. A data-based structural health monitoring approach for damage detection in steel bridges using experimental data. Journal of Civil Structural Health Monitoring, 12(1):101-115. ![]() [45]WanHP, NiYQ, 2018. Bayesian modeling approach for forecast of structural stress response using structural health monitoring data. Journal of Structural Engineering, 144(9):04018130. ![]() [46]XieYL, LiBB, GuoJ, 2020. Bayesian operational modal analysis of a long-span cable-stayed sea-crossing bridge. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 21(7):553-564. ![]() [47]XinY, HaoH, LiJ, et al., 2019. Bayesian based nonlinear model updating using instantaneous characteristics of structural dynamic responses. Engineering Structures, 183:459-474. ![]() [48]ZahidFB, OngZC, KhooSY, 2020. A review of operational modal analysis techniques for in-service modal identification. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 42(8):398. ![]() [49]ZahidFB, OngZC, KhooSY, et al., 2021. Inertial sensor based human behavior recognition in modal testing using machine learning approach. Measurement Science and Technology, 32(11):115905. ![]() [50]ZhouK, TangJ, 2021. Structural model updating using adaptive multi-response gaussian process meta-modeling. Mechanical Systems and Signal Processing, 147:107121. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2023 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>