CLC number:
On-line Access: 2025-06-25
Received: 2024-03-14
Revision Accepted: 2024-06-28
Crosschecked: 2025-06-25
Cited: 0
Clicked: 1252
Citations: Bibtex RefMan EndNote GB/T7714
Bo HUANG, Linfeng CAO, Jiachen GUO, Chunrui XU, Yuchao LI. Centrifuge modeling of contaminant transport in keyed sand-bentonite cutoff walls[J]. Journal of Zhejiang University Science A,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.A2400148 @article{title="Centrifuge modeling of contaminant transport in keyed sand-bentonite cutoff walls", %0 Journal Article TY - JOUR
嵌入式砂-膨润土防污阻隔墙污染物运移的离心模拟机构:浙江大学,建筑工程学院,软弱土与环境土工教育部重点实验室,中国杭州,310058 目的:嵌入式土-膨润土防污阻隔墙的嵌入部分对其服役性能至关重要。本文通过开展离心模型试验,探讨嵌入部分对污染物迁移的影响,以期为嵌入式砂-膨润土防污阻隔墙的施工设计提供指导。 创新点:1.首次通过离心模型试验模拟了嵌入式砂-膨润土防污阻隔墙内的污染物运移;2.通过在数值模拟中添加裂隙这一内部边界条件,成功模拟了污染物的界面优势运移,使得模拟结果与试验结果吻合。 方法:1.通过离心模型试验,获得嵌入式土-膨润土防污阻隔墙服役36小时(相当于原型41年)后的污染物浓度分布;2.通过分析模型的渗漏量和阻隔墙内污染物浓度分布,探究阻隔墙嵌入部分与弱透水层界面处污染物的运移行为;3.通过小尺度染料示踪试验,验证界面优势运移的存在;4.通过界面优势运移的数值模拟,验证所提方法的可行性,并探究嵌入式砂-膨润土防污阻隔墙的击穿时间和服役寿命。 结论:1.阻隔墙的水平有效应力随深度先增加后减小,这与一些现场测量结果一致;2.在阻隔墙嵌入部分与弱透水层之间的界面存在污染物的优势运移,污染物沿着界面迅速运移,绕过阻隔墙的底部并到达下游;3.在数值模型中使用裂缝这一内部边界来模拟界面优势运移,模拟结果与离心试验结果较为吻合;4.界面优势运移作为一种缺陷,大大加快了污染物的运移速度,将阻隔墙的击穿时间缩短到没有界面优势运移时的1/9;5.在实际工程中,当原位土壤为粒径较大的砂土时,应使用粒径较小的粉土或粘土作为砂-膨润土防污阻隔墙的基土,以防止界面优势运移的产生。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]AcarYB, HaiderL, 1990. Transport of low-concentration contaminants in saturated earthen barriers. Journal of Geotechnical Engineering, 116(7):1031-1052. ![]() [2]ArulanandanK, ThompsonPY, KutterBL, et al., 1988. Centrifuge modeling of transport processes for pollutants in soils. Journal of Geotechnical Engineering, 114(2):185-205. ![]() [3]ASTM (American Society for Testing and Materials), 2016. Standard Test Methods for Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter, ASTM D5084-16a. ASTM, West Conshohocken, PA, USA. ![]() [4]ASTM (American Society for Testing and Materials), 2019. Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass, ASTM D2216-19. ASTM, West Conshohocken, PA, USA. ![]() [5]ASTM (American Society for Testing and Materials), 2021. Standard Test Methods for Laboratory Determination of Density and Unit Weight of Soil Specimens, ASTM D7263-21. ASTM, West Conshohocken, PA, USA. ![]() [6]CaoBY, XuJ, WangF, et al., 2021. Vertical barriers for land contamination containment: a review. International Journal of Environmental Research and Public Health, 18(23):12643. ![]() [7]CookeB, MitchellRJ, 1991. Physical modelling of a dissolved contaminant in an unsaturated sand. Canadian Geotechnical Journal, 28(6):829-833. ![]() [8]D’appoloniaDJ, 1980. Soil-bentonite slurry trench cutoffs. Journal of the Geotechnical Engineering Division, 106(4):399-417. ![]() [9]FilzGM, HenryLB, HeslinGM, et al., 2001. Determining hydraulic conductivity of soil-bentonite using the API filter press. Geotechnical Testing Journal, 24(1):61-71. ![]() [10]GamerdingerAP, KaplanDI, WellmanDM, et al., 2001. Two-region flow and decreased sorption of uranium (VI) during transport in hanford groundwater and unsaturated sands. Water Resources Research, 37(12):3155-3162. ![]() [11]GelharLW, WeltyC, RehfeldtKR, 1992. A critical review of data on field-scale dispersion in aquifers. Water Resources Research, 28(7):1955-1974. ![]() [12]HensleyPJ, SchofieldAN, 1991. Accelerated physical modelling of hazardous-waste transport. Géotechnique, 41(3):447-465. ![]() [13]HutchisonJM, SeamanJC, AburimeSA, et al., 2003. Chromate transport and retention in variably saturated soil columns. Vadose Zone Journal, 2(4):702-714. ![]() [14]KeH, TongX, LiYC, et al., 2018. Force equilibrium-based model for predicting stresses in soil-bentonite cutoff walls. Journal of Geotechnical and Geoenvironmental Engineering, 144(2):04017112. ![]() [15]KereratC, SasanakulI, SoralumpS, 2013. Centrifuge modeling of LNAPL infiltration in granular soil with containment. Journal of Geotechnical and Geoenvironmental Engineering, 139(6):892-902. ![]() [16]KnightMA, MitchellRJ, 1996. Modelling of light nonaqueous phase liquid (LNAPL) releases into unsaturated sand. Canadian Geotechnical Journal, 33(6):913-925. ![]() [17]KumarRP, SinghDN, 2012. Geotechnical centrifuge modeling of chloride diffusion through soils. International Journal of Geomechanics, 12(3):327-332. ![]() [18]LeeT, BensonCH, 2000. Flow past bench-scale vertical ground-water cutoff walls. Journal of Geotechnical and Geoenvironmental Engineering, 126(6):511-520. ![]() [19]LiJS, JiangWH, GeSQ, et al., 2022. Coupled model for consolidation and organic contaminant transport in GMB/CCL composite liner under non-isothermal distribution condition. Computers and Geotechnics, 150:104893. ![]() [20]LiYC, CleallPJ, WenYD, et al., 2015. Stresses in soil-bentonite slurry trench cut-off walls. Géotechnique, 65(10):843-850. ![]() [21]LiYC, ChenGN, ChenYM, et al., 2017. Design charts for contaminant transport through slurry trench cutoff walls. Journal of Environmental Engineering, 143(9):06017005. https://doi.org/10.1061/%28ASCE%29EE.1943-7870.0001253 ![]() [22]LoIMC, ZhangJH, HuLM, 2005. Centrifuge modeling of cadmium migration in saturated and unsaturated soils. Soil and Sediment Contamination: an International Journal, 14(5):417-431. ![]() [23]McKinleyJD, PriceBA, LynchRJ, et al., 1998. Centrifuge modelling of the transport of a pulse of two contaminants through a clay layer. Géotechnique, 48(3):421-425. ![]() [24]MottHV, WeberWJ, 1991. Diffusion of organic contaminants through soilbentonite cutoff barriers. Research Journal of the Water Pollution Control Federation, 63(2):166-176. ![]() [25]MozafariB, FahsM, Ataie-AshtianiB, et al., 2018. On the use of COMSOL multiphysics for seawater intrusion in fractured coastal aquifers. E3S Web of Conferences, 54:00020. ![]() [26]RoweRK, AbdelrazekAY, 2019. Effect of interface transmissivity and hydraulic conductivity on contaminant migration through composite liners with wrinkles or failed seams. Canadian Geotechnical Journal, 56(11):1650-1667. ![]() [27]RubinH, RabideauAJ, 2000. Approximate evaluation of contaminant transport through vertical barriers. Journal of Contaminant Hydrology, 40(4):311-333. ![]() [28]RuffingD, EvansJ, CoughenourN, 2018. Soil-bentonite slurry trench cutoff wall longevity. IFCEE 2018, p.214-223. ![]() [29]RuffingDG, EvansJC, MalusisMA, 2010. Prediction of earth pressures in soil-bentonite cutoff walls. GeoFlorida 2010: Advances in Analysis, Modeling & Design, p.2416-2425. ![]() [30]RyanC, RuffingD, EvansJC, 2022. Soil bentonite slurry trench cutoff walls: history, design, and construction practices. Geo-Congress 2022, p.89-99. ![]() [31]RyanCR, SpauldingCA, 2008. Strength and permeability of a deep soil bentonite slurry wall. GeoCongress 2008: Geotechnics of Waste Management and Remediation, p.644-651. ![]() [32]ShuS, ZhuW, WangSW, et al., 2018. Leachate breakthrough mechanism and key pollutant indicator of municipal solid waste landfill barrier systems: centrifuge and numerical modeling approach. Science of the Total Environment, 612:1123-1131. https:// doi.org/10.1016/j.scitotenv.2017.08.185 ![]() [33]SogaK, KawabataJ, KechavarziC, et al., 2003. Centrifuge modeling of nonaqueous phase liquid movement and entrapment in unsaturated layered soils. Journal of Geotechnical and Geoenvironmental Engineering, 129(2):173-182. ![]() [34]TachavisesC, BensonCH, 1997. Hydraulic importance of defects in vertical groundwater cut-off walls. Proceedings of the Conference on In Situ Remediation of the Geoenvironment, p.168-180. ![]() [35]TimmsW, HendryMJ, MuiseJ, et al., 2009. Coupling centrifuge modeling and laser ablation inductively coupled plasma mass spectrometry to determine contaminant retardation in clays. Environmental Science & Technology, 43(4):1153-1159. ![]() [36]TongX, LiYC, KeH, et al., 2020. In situ stress states and lateral deformations of soil-bentonite cutoff walls during consolidation process. Canadian Geotechnical Journal, 57(1):139-148. ![]() [37]WangYZ, ChenYM, XieHJ, et al., 2016. Lead adsorption and transport in loess-amended soil-bentonite cut-off wall. Engineering Geology, 215:69-80. ![]() [38]WeiSJ, LiYC, ShenP, et al., 2023. Molecular force mechanism of hydrodynamics in clay nanopores. Journal of Zhejiang University-SCIENCE A (Applied physics & Engineering), 24(9):817-827. ![]() [39]XuHQ, ShuS, WangSW, et al., 2019. Studies on the chemical compatibility of soil-bentonite cut-off walls for landfills. Journal of Environmental Management, 237:155-162. ![]() [40]YaoSY, LiYC, TongS, et al., 2023. Numerical investigation of the effect of geosynthetic clay liner chemical incompatibility on flow and contaminant transport through a defective composite liner. Journal of Zhejiang University-SCIENCE A (Applied physics & Engineering), 24(7):557-568. ![]() [41]YawsCL, 2014. Diffusion coefficient at infinite dilution in water–inorganic compounds. In: Transport Properties of Chemicals and Hydrocarbons. Gulf Professional Publishing, Houston, Texas, USA, p.704-705. ![]() [42]YeoSS, ShackelfordCD, EvansJC, 2005. Consolidation and hydraulic conductivity of nine model soil-bentonite backfills. Journal of Geotechnical and Geoenvironmental Engineering, 131(10):1189-1198. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:10(1189) ![]() [43]ZengX, SuJ, WangHY, et al., 2022. Centrifuge modeling of chloride ions completely breakthrough kaolin clay liner. Sustainability, 14(12):6976. ![]() [44]ZhanLT, YouYQ, ZhaoR, et al., 2023a. Centrifuge modelling of lead retardation in soil-bentonite cut-off walls. International Journal of Physical Modelling in Geotechnics, 23(4):166-179. ![]() [45]ZhanLT, CaoLF, ZhaoR, et al., 2023b. Performances of the soil-bentonite cutoff wall composited with geosynthetic clay liners: large-scale model tests and numerical simulations. Sustainability, 15(3):1886. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>