Current Issue: <FITEE>

Frontiers of Information Technology & Electronic Engineering (former title: Journal of Zhejiang University SCIENCE C (Computers & Electronics), 2010-2014)

ISSN 2095-9184 (print); ISSN 2095-9230 (online); CN 33-1389/TP; Monthly.


FITEE is an international peer-reviewed journal indexed by SCI-E, Ei Compendex, DBLP, IC, Scopus, JST, CSA, etc. It covers research in Electrical and Electronic Engineering, including Computer Science, Information Sciences, Control, Automation, Telecommunications, and related disciplines.

Impact factor: 0.308 (2011), 0.297 (2012), 0.380 (2013), 0.415 (2014), 0.392 (2015), 0.622 (2016), 0.910 (2017), 1.033 (2018), 1.604 (2019), 2.161 (2020), 2.526 (2021).

 


Frontiers of Information Technology & Electronic Engineering

ISSN 2095-9184 (print), ISSN 2095-9230 (online), monthly

   Cover:  <332>
      
Contents:  <53>

<<<                         CONTENTS                         >>>

Review Article

Review Article: Synaptic devices based on semiconductor nanocrystals

Mingxuan BU, Yue WANG, Lei YIN, Zhouyu TONG, Yiqiang ZHANG, Deren YANG, Xiaodong PI

DOI: 10.1631/FITEE.2100551 Downloaded: 564 Clicked: 370 Cited: 0 Commented: 0(p.1579-1601) <Full Text>   <PPT>  27

Chinese summary   <6>  基于半导体纳米晶体的神经突触器件

步明轩1,2,王越1,2,尹蕾1,2,童周禹1,2,张懿强3,杨德仁1,2,4,5,皮孝东1,2,4,5
1浙江大学硅材料国家重点实验室,中国杭州市,310027
2浙江大学材料科学与工程学院,中国杭州市,310027
3郑州大学材料科学与工程学院,中国郑州市,450001
4浙江大学杭州国际科创中心先进半导体研究院,中国杭州市,311200
5浙江大学杭州国际科创中心浙江省宽禁带功率半导体材料与器件重点实验室,中国杭州市,311200
摘要:近年来,人们对信息处理的需求日益增长,脑启发式神经形态器件得到了广泛的关注。突触器件作为一类重要的神经形态器件,在短短几年内迅速升温。在用于制备突触器件的各种材料中,半导体纳米晶体(NCs)因其优异的电学和光学性能而成为首选材料之一。本综述论文首先介绍了基于半导体纳米晶体的突触器件的研究背景及半导体纳米晶体的基本性质。然后,根据器件有源层所用纳米晶体种类的不同,分类介绍了基于纳米晶体的突触器件的最新研究进展。最后,讨论了基于半导体纳米晶体的突触器件目前仍面临的问题和挑战。

关键词组:半导体纳米晶体;突触器件;神经形态计算

Research Articles

A novel robotic visual perception framework for underwater operation

Yue LU, Xingyu CHEN, Zhengxing WU, Junzhi YU, Li WEN

DOI: 10.1631/FITEE.2100366 Downloaded: 852 Clicked: 719 Cited: 0 Commented: 0(p.1602-1619) <Full Text>   <PPT>  30

Chinese summary   <11>  针对水下作业的新型机器人视觉感知框架

鲁岳1,陈星宇2,吴正兴1,喻俊志1,3,文力4
1中国科学院自动化研究所复杂系统管理与控制国家重点实验室,中国北京市,100190
2快手科技Ytech,中国北京市,100085
3北京大学工学院先进制造与机器人系湍流与复杂系统国家重点实验室,中国北京市,100871
4北京航空航天大学机械工程及自动化学院,中国北京市,100191
摘要:水下机器人操作通常需要视觉感知(如目标检测和跟踪),但水下场景视觉质量较差,且代表一种特殊分布,会影响视觉感知的准确性。同时,检测的连续性和稳定性对机器人感知也很重要,但常用的基于静态精度的评估(即平均精度(average precision))不足以反映检测器的时序性能。针对这两个问题,本文提出一种新型机器人视觉感知框架。首先,研究不同质量的数据分布与视觉恢复在检测性能上的关系。结果表明虽然分布质量对分布内检测精度几乎没有影响,但是视觉恢复可以通过缓解分布漂移,从而有益于真实海洋场景的检测。此外,提出基于目标轨迹的检测连续性和稳定性的非参考评估方法,以及一种在线轨迹优化(online tracklet refinement,OTR)来提高检测器的时间性能。最后,结合视觉恢复,建立精确稳定的水下机器人视觉感知框架。为了将视频目标检测(video object detection,VID)方法扩展到单目标跟踪任务,提出小交并比抑制(small-overlap suppression,SOS)方法,实现目标检测和目标跟踪之间的灵活切换。基于ImageNet VID数据集和真实环境下的机器人任务进行了大量实验,实验结果验证了所作分析的正确性及所提方法的优越性。代码公开在https://github.com/yrqs/VisPerception。

关键词组:水下作业;机器人感知;视觉恢复;视频目标检测

Improving entity linking with two adaptive features

Hongbin ZHANG, Quan CHEN, Weiwen ZHANG

DOI: 10.1631/FITEE.2100495 Downloaded: 799 Clicked: 546 Cited: 0 Commented: 0(p.1620-1630) <Full Text>   <PPT>  26

Chinese summary   <11>  利用两个自适应特征改进实体链接

张鸿彬,陈权,张伟文
广东工业大学计算机学院,中国广州市,510006
摘要:实体链接是自然语言处理中的一项基本任务。现有的基于神经网络的系统更多地关注全局模型的构建,而忽略了局部模型中潜在的语义信息和有效实体类型信息的获取。本文提出两个自适应特征,其中第一个自适应特征使得局部和全局模型能够捕获潜在信息,第二个自适应特征能够描述实体类型嵌入的有效信息。这些自适应特征可以很自然地协同工作来处理一些不确定的实体类型信息。实验结果表明,我们的实体链接系统在AIDA-B和MSNBC数据集上取得了最佳的性能,并在域外数据集上达到了最佳的平均性能。这些结果表明,所提出的自适应特征能够基于其自身不同的上下文来捕获有利于实体链接的信息。

关键词组:实体链接;局部模型;全局模型;自适应特征;实体类型

TEES: topology-aware execution environment service for fast and agile application deployment in HPC

Mingtian SHAO, Kai LU, Wanqing CHI, Ruibo WANG, Yiqin DAI, Wenzhe ZHANG

DOI: 10.1631/FITEE.2100284 Downloaded: 1345 Clicked: 1800 Cited: 0 Commented: 0(p.1631-1645) <Full Text>   <PPT>  29

Chinese summary   <10>  TEES:一种面向高性能计算快速、灵活应用程序部署的拓扑感知的运行环境服务

邵明天,卢凯,迟万庆,王睿伯,戴屹钦,张文喆
国防科技大学计算机学院,中国长沙市,410073
摘要:高性能计算(HPC)即将达到新的高度:百亿亿次。应用程序部署正成为一个日益突出的问题。容器技术解决了应用程序及其运行环境的封装和迁移问题。但是,容器镜像太过笨重,在大量计算结点上的部署过程非常耗时。虽然点对点(P2P)方式带来更高的传输效率,但也引入更大的网络负载。所有这些问题都会导致应用程序的高启动延迟。为解决这些问题,提出拓扑感知的运行环境服务(TEES),用于在高性能计算系统上快速、灵活地部署应用程序。TEES为用户创建了一个更轻量级的运行环境,并使用一种更有效的拓扑感知P2P方法减少部署时间。结合分步传输和提前启动机制,TEES降低了应用程序的启动延迟。在天河高性能计算系统中,TEES在3秒内实现了在17 560个计算结点上的一个典型应用程序的部署和启动。与基于容器的应用程序部署方式相比,速度提高了12倍,网络负载减少了85%。

关键词组:运行环境;应用部署;高性能计算(HPC);容器;点对点(P2P);网络拓扑

ShortTail: taming tail latency for erasure-code-based in-memory systems

Yun TENG, Zhiyue LI, Jing HUANG, Guangyan ZHANG

DOI: 10.1631/FITEE.2100566 Downloaded: 547 Clicked: 540 Cited: 0 Commented: 0(p.1646-1657) <Full Text>   <PPT>  25

Chinese summary   <10>  ShortTail:降低纠删码内存存储系统的尾部延迟

滕云1,3,李之悦2,4,黄晶1,3,张广艳2,4
1吉林大学计算机科学与技术学院,中国长春市,130012
2清华大学计算机科学与技术系,中国北京市,100084
3吉林大学符号计算与知识工程教育部重点实验室,中国长春市,130012
4北京国家信息科学与技术研究中心(清华大学),中国北京市,100084
摘要:为获得高性能和高数据可用性,基于纠删码的内存存储系统得到广泛应用。然而,随着集群规模不断增长,服务器级别的性能降级问题出现得越来越频繁,进而导致长尾延迟。在基于纠删码的系统中,由于一个纠删码操作可能依赖于多个子操作的同步完成,长尾延迟的影响被进一步放大。本文提出一种称为ShortTail的基于纠删码的内存存储系统,该系统可实现稳定的性能和较低的读写延迟。首先,ShortTail使用轻量请求监视器监测每个内存节点性能,以便及时发现性能降级节点。其次,ShortTail选择性执行降级读操作和重定向写操作,以避免访问性能降级节点。最后,ShortTail采用一种自适应写策略降低小写请求的写放大程度。本文在Memcached上实现了ShortTail,并将其与两个系统进行比较。实验结果表明,ShortTail最高可降低63.77%的99分位延迟,且显著改善中位延迟和平均延迟。

关键词组:纠删码;内存存储系统;节点性能降级;小写请求;尾部延迟

Robust global route planning for an autonomous underwater vehicle in a stochastic environment

Jiaxin ZHANG, Meiqin LIU, Senlin ZHANG, Ronghao ZHENG

DOI: 10.1631/FITEE.2200026 Downloaded: 640 Clicked: 507 Cited: 0 Commented: 0(p.1658-1672) <Full Text>   <PPT>  24

Chinese summary   <8>  随机环境中的自主水下航行器鲁棒全局路径规划

张佳欣1,2,刘妹琴1,2,3,张森林1,2,郑荣濠1,2
1浙江大学工业控制技术国家重点实验室,中国杭州市,310027
2浙江大学电气工程学院,中国杭州市,310027
3西安交通大学人工智能与机器人研究所,中国西安市,710049
摘要:本文提出一种在随机局部路径成本下使自主水下航行器在作业海域选择性地完成部分预定任务的路径规划器。该问题被表述为定向越野问题的变体。本文在遗传算法(GA)的基础上,提出一种基于贪心策略的遗传算法(GGA)。该算法包含一种新颖的通过在进化过程中将不可行个体映射到可行解空间来提高优化效率的重生算子,并以差分进化规划器计算确定性局部路径成本。局部路径成本的不确定性来自不可预测的障碍物、测量误差和轨迹跟踪误差。为了提高规划器在不确定环境下的鲁棒性,设计了一种用于路径评估的采样策略,通过对局部路径的概率密度函数多次采样,得到对路径实际成本的估计。通过蒙特卡罗仿真实验验证所提规划器的优越性和有效性。仿真结果表明,所提出的GGA在总收益方面优于同类算法4.7%-24.6%,而基于抽样的GGA路径规划器(S-GGARP)相较于普通的GGA路径规划器(GGARP)提高了5.5%的平均收益。

关键词组:自主水下航行器;路径规划;遗传算法;定向越野问题;随机路径成本

A deep Q-learning network based active object detection model with a novel training algorithm for service robots

Shaopeng LIU, Guohui TIAN, Yongcheng CUI, Xuyang SHAO

DOI: 10.1631/FITEE.2200109 Downloaded: 394 Clicked: 366 Cited: 0 Commented: 0(p.1673-1683) <Full Text>   <PPT>  27

Chinese summary   <12>  基于深度Q学习网络与新训练算法的服务机器人主动物品检测模型

刘少鹏,田国会,崔永成,邵旭阳
山东大学控制科学与工程学院,中国济南市,250061
摘要:本文研究了主动物品检测(AOD)问题。AOD是服务机器人在家庭环境中完成服务任务的重要组成部分,通过适当的移动动作引导机器人接近目标物品。目前基于强化学习的AOD模型存在训练效率低和测试精度差的问题。因此,本文提出一种基于深度Q学习网络的AOD模型,并设计了一种新的模型训练算法。该模型旨在拟合各种动作Q值,包括状态空间、特征提取和多层感知机。与现有研究不同,本文针对所提AOD模型设计了一种基于记忆的训练算法,以提高模型训练效率和测试精度。此外,提出一种最终状态生成方法判断训练过程中AOD任务何时停止。本文所提方法在AOD数据集上进行了充分的对比实验和消融实验。实验结果表明所提方法优于其他同类方法,所设计的训练算法比原始训练算法更高效。

关键词组:主动物品检测;深度Q学习网络;训练算法;服务机器人

Event-triggered dynamic output-feedback control for a class of Lipschitz nonlinear systems

Zhiqian LIU, Xuyang LOU, Jiajia JIA

DOI: 10.1631/FITEE.2100552 Downloaded: 918 Clicked: 915 Cited: 0 Commented: 0(p.1684-1699) <Full Text>   <PPT>  28

Chinese summary   <7>  一类Lipschitz非线性系统的事件触发动态输出反馈控制

刘智倩,楼旭阳,贾佳佳
江南大学轻工过程先进控制教育部重点实验室,中国无锡市,214122
摘要:本文研究一类Lipschitz非线性系统的动态输出反馈控制问题。首先,针对该系统设计了一个连续时间控制器,并且给出了系统稳定的充分条件。其次,针对该Lipschitz非线性系统提出一种新的事件触发机制,在该触发机制中引入了新的事件触发条件,并构建了事件触发控制下的闭环混杂系统。在混杂系统框架下建立了闭环系统稳定的充分条件。此外,给出了最小事件间隔的上界,以避免Zeno现象。最后,通过在神经网络系统和基因调控网络系统中的数值仿真验证了理论结果及所提方法的优越性。

关键词组:Lipschitz非线性系统;动态输出反馈控制;事件触发控制;全局渐近稳定

Design and experimental validation of event-triggered multi-vehicle cooperation in conflicting scenarios

Zhanyi HU, Yingjun QIAO, Xingyu LI, Jin HUANG, Yifan JIA, Zhihua ZHONG

DOI: 10.1631/FITEE.2100504 Downloaded: 546 Clicked: 484 Cited: 0 Commented: 0(p.1700-1713) <Full Text>   <PPT>  37

Chinese summary   <7>  冲突场景下基于事件触发的多车协同控制与实验验证

胡展溢1,乔英俊2,3,李星宇1,黄晋1,贾一帆1,钟志华2
1清华大学车辆与运载学院,中国北京市,100084
2中国工程院,中国北京市,100088
3同济大学道路与交通工程教育部重点实验室,中国上海市,200092
摘要:队列系统在提高交通吞吐量和道路安全方面极具潜力,其被广泛用于高速公路上智能网联汽车的协同控制。受队列控制的启发,虚拟队列可以极大地简化冲突场景下智能网联多车系统的协同行驶。车车通信是虚拟队列系统的重要组成部分。在通信资源有限的情况下,大量数据传输必然会出现传输延迟、丢包等缺陷。因此,需要避免不必要的传输,从而建立一个可靠的无线网络。针对这一问题,本文提出一种基于事件触发的鲁棒控制方法,在保证时变不确定性条件下虚拟队列系统稳定性的同时,减少通信资源的利用。本文解析地证明了闭环系统的一致有界性、一致最终有界性和队列稳定性。本文所设计的触发条件考虑了边界信息的不确定性,使阈值估计更加合理。仿真和实验结果表明,该方法可以在多车协作的同时大大减少数据传输。阈值的选取影响跟踪能力和通信负担,其优化方法值得在今后的研究中探索。

关键词组:智能网联汽车;事件触发控制;非线性不确定性动力学;冲突区域

DIP-MOEA: a double-grid interactive preference based multi-objective evolutionary algorithm for formalizing preferences of decision makers

Luda ZHAO, Bin WANG, Xiaoping JIANG, Yicheng LU, Yihua HU

DOI: 10.1631/FITEE.2100508 Downloaded: 508 Clicked: 457 Cited: 0 Commented: 0(p.1714-1732) <Full Text>   <PPT>  27

Chinese summary   <12>  DIP-MOEA:一种形式化表达决策者偏好的双重网格交互偏好多目标进化算法

赵禄达1,2,王斌1,2,姜晓平1,2,卢义成3,胡以华1,2
1国防科技大学电子对抗学院,中国合肥市,230037
2国防科技大学第三学科交叉中心,中国合肥市,230037
3中国人民解放军78092部队,中国成都市,610000
摘要:几乎所有现有的基于偏好的多目标进化算法(MOEA)给出的最终解集都与决策者偏好信息的表示存在一定距离。因此,提出一种多目标优化算法,称为双重网格交互式基于偏好的多目标进化算法(DIP-MOEA),该算法明确考虑了决策者偏好。首先根据实际多目标优化问题(MOPs)的优化目标和决策者偏好映射隶属度函数,生成决策偏好度网格和偏好误差网格。其次,提出偏好度支配和偏好误差支配两种种群支配方式,并利用该方案更新两个网格中的种群。最后综合两个网格中的种群并结合决策者偏好交互信息可进行偏好多目标优化交互。为验证DIP-MOEA性能,我们在基本DTLZ系列函数和多目标背包问题上对DIP-MOEA进行测试,并将其与几种流行的基于偏好的多目标进化算法进行比较。实验结果表明,DIP-MOEA能较好表达决策者偏好信息,提供满足决策者偏好的解集,快速求解测试问题结果,并在最终解集的Pareto前沿分布性具有较好表现。

关键词组:多目标进化算法(MOEA);决策者偏好形式化;种群更新策略;偏好交互

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2023 Journal of Zhejiang University-SCIENCE