Full Text:   <3116>

Summary:  <1620>

CLC number: V439; TP23

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2019-07-12

Cited: 0

Clicked: 6912

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Shu-jian Sun

http://orcid.org/0000-0002-3016-4546

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2019 Vol.20 No.11 P.1516-1529

http://doi.org/10.1631/FITEE.1800068


Design, development, and performance of an ammonia self-managed vaporization propulsion system for micro-nano satellites


Author(s):  Shu-jian Sun, Tao Meng, Zhong-he Jin

Affiliation(s):  School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027, China

Corresponding email(s):   sunshujian@zju.edu.cn, mengtao@zju.edu.cn

Key Words:  Self-managed vaporization, Liquefied ammonia, Milli-Newton level propulsion, Micro-thrust, High-precision orbital control, Micro-nano satellite


Shu-jian Sun, Tao Meng, Zhong-he Jin. Design, development, and performance of an ammonia self-managed vaporization propulsion system for micro-nano satellites[J]. Frontiers of Information Technology & Electronic Engineering, 2019, 20(11): 1516-1529.

@article{title="Design, development, and performance of an ammonia self-managed vaporization propulsion system for micro-nano satellites",
author="Shu-jian Sun, Tao Meng, Zhong-he Jin",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="20",
number="11",
pages="1516-1529",
year="2019",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1800068"
}

%0 Journal Article
%T Design, development, and performance of an ammonia self-managed vaporization propulsion system for micro-nano satellites
%A Shu-jian Sun
%A Tao Meng
%A Zhong-he Jin
%J Frontiers of Information Technology & Electronic Engineering
%V 20
%N 11
%P 1516-1529
%@ 2095-9184
%D 2019
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1800068

TY - JOUR
T1 - Design, development, and performance of an ammonia self-managed vaporization propulsion system for micro-nano satellites
A1 - Shu-jian Sun
A1 - Tao Meng
A1 - Zhong-he Jin
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 20
IS - 11
SP - 1516
EP - 1529
%@ 2095-9184
Y1 - 2019
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1800068


Abstract: 
An ammonia self-managed vaporization propulsion (ASVP) system for micro-nano satellites is presented. Compared with a normal cold gas or liquefied gas propulsion system, a multiplex parallel sieve type vaporizer and related vaporization control methods are put forward to achieve self-managed vaporization of liquefied propellant. The problems of high vaporization latent heat and incomplete vaporization of liquefied ammonia are solved, so that the ASVP system takes great advantage of high theoretical specific impulse and high propellant storage density. Furthermore, the ASVP operation procedure and its physical chemistry theories and mathematical models are thoroughly analyzed. An optimal strategy of thrust control is proposed with consideration of thrust performance and energy efficiency. The ground tests indicate that the ASVP system weighs 1.8 kg (with 0.34-kg liquefied ammonia propellant) and reaches a specific impulse of more than 100 s, while the power consumption is less than 10 W. The ASVP system meets multiple requirements including high specific impulse, low power consumption, easy fabrication, and uniform adjustable thrust output, and thus is suitable for micro-nano satellites.

面向微纳卫星自主汽化管理液氨推进系统的设计、研制和测试

摘要:提出一种面向微纳卫星的自主汽化管理液氨推进系统。相比常规冷气或液化气推进系统,提出多路平行筛孔式汽化装置和对应汽化控制方法。所提方案有效解决了液氨高汽化潜热和不易完全汽化的问题,从而发挥液氨推进剂高贮存密度和高比冲性能优势。此外,重点分析自主汽化管理液氨推进系统的工作流程及其涉及的物理化学过程和数学模型。综合考虑推力表现和能源效率,提出最优系统推力控制策略。地面测试表明,自主汽化管理液氨推进系统总重1.8 kg(包含0.34 kg液氨推进剂),比冲达到100 s,系统功耗在10 W以下。自主汽化管理液氨推进系统具有高比冲、低功耗、可实现性强、推力输出均一稳定等特点,适合微纳卫星在轨应用。

关键词:自主汽化管理;液氨;毫牛量级推进技术;微推力;高精度轨道控制;微纳卫星

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Carpenter CB, Schmuland D, Overly J, et al., 2013. CubeSat high-impulse adaptable modular propulsion system (CHAMPS) product line development status and mission applications. Proc 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conf, p.1-16.

[2]Chigier N, Gemci T, 2003. A review of micro propulsion technology. Proc 41st Aerospace Sciences Meeting and Exhibit, p.1-11.

[3]Fu XC, Shen WH, Yao TY, et al., 2005. Phase equilibrium. In: Fu XC, Shen WX, Tao TY, et al. (Eds.), Physical Chemistry (5th Ed.). Higher Education Press, Beijing, China, p.270-280 (in Chinese).

[4]Gibbon D, Charman P, Kay N, 2000. The design, development and in-orbit performance of a propulsion system for the SNAP-1 nanosatellite. Proc 3rd Int Conf on Spacecraft Propulsion, p.91-98.

[5]Gibbon D, Paul M, Smith P, et al., 2001. The use of liquefied gases in small satellite propulsion systems. Proc 37th Joint Propulsion Conf and Exhibit, p.1-7.

[6]Guo SQ, Hou H, Zhang Y, 2013. Propulsion subsystem technology for YH-1 Mars probe. Aerosp Shanghai, 30(4):96-99, 245 (in Chinese).

[7]Hejmanowski NJCA, Woodruff RB, 2015. CubeSat high impulse propulsion system (CHIPS). Proc 62nd JANNAF Propulsion Meeting (7th Spacecraft Propulsion), p.1-12.

[8]Lappas V, Pottinger S, Knoll A, et al., 2011. Micro-electric propulsion (EP) solutions for small satellite missions. Proc 2nd Int Conf on Space Technology, p.1-4.

[9]Lemmer K, 2017. Propulsion for CubeSats. Acta Astronaut, 134:231-243.

[10]Levchenko L, Bazaka K, Ding YJ, et al., 2018. Space micropropulsion systems for CubeSats and small satellites: from proximate targets to furthermost frontiers. Appl Phys Rev, 5:011104.

[11]Matticari G, Noci GE, Siciliano P, et al., 2006. Cold gas micro propulsion prototype for very fine spacecraft attitude/position control. Proc 42nd AIAA/ASME/SAE/ ASEE Joint Propulsion Conf, p.1-13.

[12]Poghosyan A, Golkar A, 2017. CubeSat evolution: analyzing CubeSat capabilities for conducting science missions. Prog Aerosp Sci, 88:59-83.

[13]Ranjan R, Chou SK, Riaz F, et al., 2017. Cold gas micro propulsion development for satellite application. Energy Proc, 143:754-761.

[14]Robin MR, Brogan TR, Cardiff EH, 2008. An ammonia microresistojet (MRJ) for micro satellites. Proc 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conf and Exhibit, p.1-11.

[15]Satellite Industry Association, 2017. 2017 State of the Satellite Industry Report. Satellite Industry Association, p.18-22. http://www.sia.org [Accessed on Feb. 23, 2017].

[16]Scharfe DB, Ketsdever AD, 2009. A review of high thrust, high delta-V options for microsatellite missions. Proc 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conf and Exhibit, p.1-14.

[17]Tang HB, Liu C, Xiang M, et al., 2007. Full elastic microthrust measurement equipment. J Propul Technol, 28(6):703-706 (in Chinese).

[18]Wei Q, Li YC, 2012. Technology of ammonia flashing jet propulsion in BX-1 satellite. Manned Spacefl, 18(1):86-91 (in Chinese).

[19]Wu XS, Chen J, Wang D, 2016. Foundation of one demensional steady flow. In: Wu XS, Chen J, Wang D (Eds.), Gas Dynamics of Solid Propellant Rocket Motor. Beihang University Press, Beijing, p.32-58 (in Chinese).

[20]Zube DM, Messerschmid EW, 1993. ATOS-flight experiment for a 700W ammonia arcjet. Proc 29th AIAA/ASME/ SAE/ASEE Joint Propulsion Conf and Exhibit, p.1-13.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE