CLC number: TN953
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2020-11-13
Cited: 0
Clicked: 6228
Citations: Bibtex RefMan EndNote GB/T7714
Dai Liu, Yong-bo Zhao, Zi-qiao Yuan, Jie-tao Li, Guo-ji Chen. Target tracking methods based on a signal-to-noise ratio model[J]. Frontiers of Information Technology & Electronic Engineering, 2020, 21(12): 1804-1814.
@article{title="Target tracking methods based on a signal-to-noise ratio model",
author="Dai Liu, Yong-bo Zhao, Zi-qiao Yuan, Jie-tao Li, Guo-ji Chen",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="21",
number="12",
pages="1804-1814",
year="2020",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1900679"
}
%0 Journal Article
%T Target tracking methods based on a signal-to-noise ratio model
%A Dai Liu
%A Yong-bo Zhao
%A Zi-qiao Yuan
%A Jie-tao Li
%A Guo-ji Chen
%J Frontiers of Information Technology & Electronic Engineering
%V 21
%N 12
%P 1804-1814
%@ 2095-9184
%D 2020
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1900679
TY - JOUR
T1 - Target tracking methods based on a signal-to-noise ratio model
A1 - Dai Liu
A1 - Yong-bo Zhao
A1 - Zi-qiao Yuan
A1 - Jie-tao Li
A1 - Guo-ji Chen
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 21
IS - 12
SP - 1804
EP - 1814
%@ 2095-9184
Y1 - 2020
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1900679
Abstract: In traditional target tracking methods, the angle error and range error are often measured by the empirical value, while observation noise is a constant. In this paper, the angle error and range error are analyzed. They are influenced by the signal-to-noise ratio (SNR). Therefore, a model related to SNR has been established, in which the SNR information is applied for target tracking. Combined with an advanced nonlinear filter method, the extended Kalman filter method based on the SNR model (SNR-EKF) and the unscented Kalman filter method based on the SNR model (SNR-UKF) are proposed. There is little difference between the SNR-EKF and SNR-UKF methods in position precision, but the SNR-EKF method has advantages in computation time and the SNR-UKF method has advantages in velocity precision. Simulation results show that target tracking methods based on the SNR model can greatly improve the tracking performance compared with traditional tracking methods. The target tracking accuracy and convergence speed of the proposed methods have significant improvements.
[1]Alberhseim WJ, 1981. A closed-form approximation to Robertson’s detection characteristics. Proc IEEE, 69(7):839.
[2]Barczyk M, Bonnabel S, Deschaud JE, et al., 2015. Invariant EKF design for scan matching-aided localization. IEEE Trans Contr Syst Technol, 23(6):2440-2448.
[3]Brekke E, Hallingstad O, Glattetre J, 2010. Tracking small targets in heavy-tailed clutter using amplitude information. IEEE J Ocean Eng, 35(2):314-329.
[4]Brekke E, Hallingstad O, Glattetre J, 2011. The modified Riccati equation for amplitude-aided target tracking in heavy-tailed clutter. IEEE Trans Aerosp Electron Syst, 47(4):2874-2886.
[5]Daniyan A, Lambotharan S, Deligiannis A, et al., 2018. Bayesian multiple extended target tracking using labeled random finite sets and splines. IEEE Trans Signal Process, 66(22):6076-6091.
[6]Das A, Rao BD, 2012. SNR and noise variance estimation for MIMO systems. IEEE Trans Signal Process, 60(8):3929- 3941.
[7]Du L, Liu H, Bao Z, et al., 2007. Radar automatic target recognition using complex high-resolution range profiles. IET Radar Sonar Nav, 1(1):18-26.
[8]Ehrman LM, Lanterman AD, 2008. Extended Kalman filter for estimating aircraft orientation from velocity measurements. IET Radar Sonar Nav, 2(1):12-16.
[9]Ehrman LM, Mahapatra PR, 2009. Impact of noncoherent pulse integration on RCS-assisted tracking. IEEE Trans Aerosp Electron Syst, 45(4):1573-1579.
[10]Gokce M, Kuzuoglu M, 2015. Unscented Kalman filter-aided Gaussian sum filter. IET Radar Sonar Nav, 9(5):589-599.
[11]Hong L, Wu S, Layne JR, 2004. Invariant-based probabilistic target tracking and identification with GMTI/HRR measurements. IEE Proc Radar Sonar Nav, 151(5):280-290.
[12]Liu CY, Shui PL, Li S, 2011. Unscented extended Kalman filter for target tracking. J Syst Eng Electron, 22(2):188-192.
[13]Liu D, Zhao YB, Xu BQ, 2019. Tracking algorithms aided by the pose of target. IEEE Access, 7:9627-9633.
[14]Menegaz HMT, Ishihara JY, Kussaba HTM, 2019. Unscented Kalman filters for Riemannian state-space systems. IEEE Trans Autom Contr, 64(4):1487-1502.
[15]Mertens M, Ulmke M, Koch W, 2016. Ground target tracking with RCS estimation based on signal strength measurements. IEEE Trans Aerosp Electron Syst, 52(1):205-220.
[16]Musicki D, Song TL, 2013. Track initialization: prior target velocity and acceleration moments. IEEE Trans Aerosp Electron Syst, 49(1):665-670.
[17]Rashedi M, Liu JF, Huang B, 2018. Triggered communication in distributed adaptive high-gain EKF. IEEE Trans Ind Inform, 14(1):58-68.
[18]Ruan Y, Hong L, 2006. Feature-aided tracking with GMTI and HRR measurements via mixture density estimation. IEE Proc Contr Theory Appl, 153(3):342-356.
[19]Skolnik M, 1962. Introduction to Radar System. Zuo QS, Xu GL, Ma L, et al., translators, 2010. Publishing House of Electronics Industry, Beijing, China (in Chinese).
[20]Tang X, Tharmarasa R, McDonald M, et al., 2017. Multiple detection-aided low-observable track initialization using ML-PDA. IEEE Trans Aerosp Electron Syst, 53(2):722- 735.
[21]Tufts DW, Cann AJ, 1983. On Albersheim’s detection equation. IEEE Trans Aerosp Electron Syst, AES-19(4):643-646.
[22]Villano M, 2014. SNR and noise variance estimation in polarimetric SAR data. IEEE Geosci Remote Sens Lett, 11(1):278-282.
[23]Xi YH, Zhang XD, Li ZW, et al., 2018. Double-ended travelling- wave fault location based on residual analysis using an adaptive EKF. IET Signal Process, 12(8):1000-1008.
[24]Zhang XY, Huang JL, Wang GH, et al., 2019. Hypersonic target tracking with high dynamic biases. IEEE Trans Aerosp Electron Syst, 55(1):506-510.
[25]Zhang Y, Mu HL, Jiang YC, et al., 2019. Moving target tracking based on improved GMPHD filter in circular SAR system. IEEE Geosci Remote Sens Lett, 16(4):559-563.
[26]Zhou GJ, Pelletier M, Kirubarajan T, et al., 2014. Statically fused converted position and Doppler measurement Kalman filters. IEEE Trans Aerosp Electron Syst, 50(1):300-318.
Open peer comments: Debate/Discuss/Question/Opinion
<1>