CLC number: TP273
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2020-11-11
Cited: 0
Clicked: 5176
Citations: Bibtex RefMan EndNote GB/T7714
Jorge A. Torres, Arno Sonck, Sergej Čelikovský, Alma R. Dominguez. Constant-gain nonlinear adaptive observers revisited: an application to chemostat systems[J]. Frontiers of Information Technology & Electronic Engineering, 2021, 22(1): 68-78.
@article{title="Constant-gain nonlinear adaptive observers revisited: an application to chemostat systems",
author="Jorge A. Torres, Arno Sonck, Sergej Čelikovský, Alma R. Dominguez",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="22",
number="1",
pages="68-78",
year="2021",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2000368"
}
%0 Journal Article
%T Constant-gain nonlinear adaptive observers revisited: an application to chemostat systems
%A Jorge A. Torres
%A Arno Sonck
%A Sergej Čelikovský
%A Alma R. Dominguez
%J Frontiers of Information Technology & Electronic Engineering
%V 22
%N 1
%P 68-78
%@ 2095-9184
%D 2021
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2000368
TY - JOUR
T1 - Constant-gain nonlinear adaptive observers revisited: an application to chemostat systems
A1 - Jorge A. Torres
A1 - Arno Sonck
A1 - Sergej Čelikovský
A1 - Alma R. Dominguez
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 22
IS - 1
SP - 68
EP - 78
%@ 2095-9184
Y1 - 2021
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2000368
Abstract: This study deals with constant-gain adaptive observers for nonlinear systems, for which relatively few solutions are available for some particular cases. We introduce an asymptotic observer of constant gain for nonlinear systems that have linear input. This allows the observer design to be formulated within the linear matrix inequality paradigm provided that a strictly positive real condition between the input disturbance and the output is fulfilled. The proposed observer is then applied to a large class of nonlinear chemostat dynamical systems that are widely used in the fermentation process, cell cultures, medicine, etc. In fact, under standard practical assumptions, the necessary change of the chemostat state coordinates exists, allowing use of the constant-gain observer. Finally, the developed theory is illustrated by estimating pollutant concentration in a Spirulina maxima wastewater treatment facility.
[1]Bastin G, Dochain D, 1990. On-line Estimation and Adaptive Control of Bioreactors: a Volume in Process Measurement and Control. Elsevier, Amsterdam, the Netherlands.
[2]Bastin G, Gevers MR, 1988. Stable adaptive observers for nonlinear time-varying systems. IEEE Trans Autom Contr, 33(7):650-658.
[3]Besançon G, de León-Morales J, Huerta-Guevara O, 2006. On adaptive observers for state affine systems. Int J Contr, 79(6):581-591.
[4]Čelikovský S, Torres-Mu noz JA, Dominguez-Bocanegra AR, 2018. Adaptive high gain observer extension and its application to bioprocess monitoring. Kybernetika, 54(1):155-174.
[5]Diop S, Fliess M, 1991. Nonlinear observability, identifiability, and persistent trajectories. Proc 30th IEEE Conf on Decision and Control, p.714-719.
[6]Dochain D, 2008. Automatic Control of Bioprocesses. Wiley. https://www.wiley.com/en-mx/Automatic+Control+of+Bioprocesses-p-9781848210257
[7]Farza M, M’Saad M, Maatoug T, et al., 2009. Adaptive observers for nonlinearly parameterized class of nonlinear systems. Automatica, 45(10):2292-2299.
[8]Farza M, Bouraoui I, Ménard T, et al., 2014. Adaptive observers for a class of uniformly observable systems with nonlinear parametrization and sampled outputs. Automatica, 50(11):2951-2960.
[9]Gauthier JP, Hammouri H, Othman S, 1992. A simple observer for nonlinear systems applications to bioreactors. IEEE Trans Autom Contr, 37(6):875-880.
[10]Hammouri H, Nadri M, 2013. An observer design for a class of implicit systems. Syst Contr Lett, 62(3):256-261.
[11]Karimi HR, Zapateiro M, Luo N, 2010. A linear matrix inequality approach to robust fault detection filter design of linear systems with mixed time-varying delays and nonlinear perturbations. J Franklin Inst, 347(6):957-973.
[12]Kreisselmeier G, 1977. Adaptive observers with exponential rate of convergence. IEEE Trans Autom Contr, 22(1):2-8.
[13]Lafont F, Busvelle E, Gauthier JP, 2011. An adaptive high-gain observer for wastewater treatment systems. J Process Contr, 21(6):893-900.
[14]Liang XY, Zhang JF, Xia XH, 2008. Adaptive synchronization for generalized Lorenz systems. IEEE Trans Autom Contr, 53(7):1740-1746.
[15]Luders G, Narendra K, 1973. An adaptive observer and identifier for a linear system. IEEE Trans Autom Contr, 18(5):496-499.
[16]Marino R, Tomei P, 1995a. Adaptive observers with arbitrary exponential rate of convergence for nonlinear systems. IEEE Trans Autom Contr, 40(7):1300-1304.
[17]Marino R, Tomei P, 1995b. Nonlinear Control Design: Geometric, Adaptive, and Robust. Prentice Hall, Limited, London, UK.
[18]Mondal S, Chakraborty G, Bhattacharyy K, 2010. LMI approach to robust unknown input observer design for continuous systems with noise and uncertainties. Int J Contr Autom Syst, 8(2):210-219.
[19]Pourgholi M, Majd VJ, 2011. A nonlinear adaptive resilient observer design for a class of Lipschitz systems using LMI. Circ Syst Signal Process, 30(6):1401-1415.
[20]Raghavan S, Hedrick JK, 1994. Observer design for a class of nonlinear systems. Int J Contr, 59(2):515-528.
[21]Wu HS, 2013. A class of adaptive robust state observers with simpler structure for uncertain non-linear systems with time-varying delays. IET Contr Theory Appl, 7(2):218-227.
[22]Zhang Q, 2002. Adaptive observer for multiple-input-multiple-output (MIMO) linear time-varying systems. IEEE Trans Autom Contr, 47(3):525-529.
Open peer comments: Debate/Discuss/Question/Opinion
<1>