CLC number:
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2021-01-07
Cited: 0
Clicked: 6564
Citations: Bibtex RefMan EndNote GB/T7714
https://orcid.org/0000-0003-0363-3412
Yang WANG, Xiangliang JIN, Jian YANG, Feng YAN, Yujie LIU, Yan PENG, Jun LUO, Jun YANG. Design and optimization of a gate-controlled dual direction electro-static discharge device for an industry-level fluorescent optical fiber temperature sensor[J]. Frontiers of Information Technology & Electronic Engineering, 2022, 23(1): 158-170.
@article{title="Design and optimization of a gate-controlled dual direction electro-static discharge device for an industry-level fluorescent optical fiber temperature sensor",
author="Yang WANG, Xiangliang JIN, Jian YANG, Feng YAN, Yujie LIU, Yan PENG, Jun LUO, Jun YANG",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="23",
number="1",
pages="158-170",
year="2022",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2000504"
}
%0 Journal Article
%T Design and optimization of a gate-controlled dual direction electro-static discharge device for an industry-level fluorescent optical fiber temperature sensor
%A Yang WANG
%A Xiangliang JIN
%A Jian YANG
%A Feng YAN
%A Yujie LIU
%A Yan PENG
%A Jun LUO
%A Jun YANG
%J Frontiers of Information Technology & Electronic Engineering
%V 23
%N 1
%P 158-170
%@ 2095-9184
%D 2022
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2000504
TY - JOUR
T1 - Design and optimization of a gate-controlled dual direction electro-static discharge device for an industry-level fluorescent optical fiber temperature sensor
A1 - Yang WANG
A1 - Xiangliang JIN
A1 - Jian YANG
A1 - Feng YAN
A1 - Yujie LIU
A1 - Yan PENG
A1 - Jun LUO
A1 - Jun YANG
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 23
IS - 1
SP - 158
EP - 170
%@ 2095-9184
Y1 - 2022
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2000504
Abstract: The input/output (I/O) pins of an industry-level fluorescent optical fiber temperature sensor readout circuit need on-chip integrated high-performance electro-static discharge (ESD) protection devices. It is difficult for the failure level of basic N-type buried layer gate-controlled silicon controlled rectifier (NBL-GCSCR) manufactured by the 0.18 μm standard bipolar- CMOS-DMOS (BCD) process to meet this need. Therefore, we propose an on-chip integrated novel deep N-well gate-controlled SCR (DNW-GCSCR) with a high failure level to effectively solve the problems based on the same semiconductor process. Technology computer-aided design (TCAD) simulation is used to analyze the device characteristics. SCRs are tested by transmission line pulses (TLP) to obtain accurate ESD parameters. The holding voltage (24.03 V) of NBL-GCSCR with the longitudinal bipolar junction transistor (BJT) path is significantly higher than the holding voltage (5.15 V) of DNW-GCSCR with the lateral SCR path of the same size. However, the failure current of the NBL-GCSCR device is 1.71 A, and the failure current of the DNW-GCSCR device is 20.99 A. When the gate size of DNW-GCSCR is increased from 2 μm to 6 μm, the holding voltage is increased from 3.50 V to 8.38 V. The optimized DNW-GCSCR (6 μm) can be stably applied on target readout circuits for on-chip electrostatic discharge protection.
[1]Chen JT, Lin CY, Ker MD, 2017. On-chip ESD protection device for high-speed I/O applications in CMOS technology. IEEE Trans Electron Dev, 64(10):3979-3985. doi: 10.1109/TED.2017.2734059
[2]Chen XJ, Wang Y, Jin XL, et al., 2019. An ESD robust high holding voltage dual-direction SCR with symmetrical I-V curve by inserting a floating P+ in PWell. Sol-State Electron, 160:107627. doi: 10.1016/j.sse.2019.107627
[3]Dai CT, Ker MD, 2018. Comparison between high-holding- voltage SCR and stacked low-voltage devices for ESD protection in high-voltage applications. IEEE Trans Electron Dev, 65(2):798-802. doi: 10.1109/TED.2017.2785121
[4]Du FB, Hou F, Liu ZW, et al., 2019. Bidirectional silicon- controlled rectifier for advanced ESD protection applications. Electron Lett, 55(2):112-114. doi: 10.1049/el.2018.6686
[5]Hou F, Liu JZ, Liu ZW, et al., 2019. New diode-triggered silicon-controlled rectifier for robust electrostatic discharge protection at high temperatures. IEEE Trans Electron Dev, 66(4):2044-2048. doi: 10.1109/TED.2019.2900052
[6]Hu T, Dong SR, Jin H, et al., 2018. A double snapback SCR ESD protection scheme for 28nm CMOS process. Microelectron Reliab, 84:20-25. doi: 10.1016/j.microrel.2018.03.010
[7]Huang XZ, Liou JJ, Liu ZW, et al., 2016. A new high holding voltage dual-direction SCR with optimized segmented topology. IEEE Electron Dev Lett, 37(10):1311-1313. doi: 10.1109/LED.2016.2598063
[8]Lee JH, Prabhu M, Natarajan MI, 2018. Engineering ESD robust LDMOS SCR devices in FinFET technology. IEEE Electron Dev Lett, 39(7):1011-1013. doi: 10.1109/LED.2018.2838760
[9]Liang HL, Xu Q, Zhu L, et al., 2019. Design of a gate diode triggered SCR for dual-direction high-voltage ESD protection. IEEE Electron Dev Lett, 40(2):163-166. doi: 10.1109/LED.2018.2890105
[10]Qi Z, Qiao M, Liang LF, et al., 2019. Novel silicon-controlled rectifier with snapback-free performance for high-voltage and robust ESD protection. IEEE Electron Dev Lett, 40(3):435-438. doi: 10.1109/LED.2019.2894646
[11]Wang Y, Jin XL, Yang L, et al., 2015. Robust dual-direction SCR with low trigger voltage, tunable holding voltage for high-voltage ESD protection. Microelectron Reliab, 55(3-4):520-526. doi: 10.1016/j.microrel.2014.12.006
[12]Wang Y, Jin XL, Peng Y, et al., 2019. A high failure-current gate-controlled dual-direction SCR for high-voltage ESD protection in 0.18-μm BCD technology. IEEE J Emerg Sel Top Power Electron, 9(1):994-1001. doi: 10.1109/JESTPE.2019.2953469
[13]Wang Y, Jin XL, Peng Y, et al., 2020. Design and optimization of high-failure-current dual-direction SCR for industrial- level ESD protection. IEEE Trans Power Electron, 35(5):4669-4677. doi: 10.1109/TPEL.2019.2944073
[14]Yen SS, Cheng CH, Fan CC, et al., 2017. Investigation of double-snapback characteristic in resistor-triggered SCRs stacking structure. IEEE Trans Electron Dev, 64(10):4200-4205. doi: 10.1109/TED.2017.2736511
[15]Zhan CR, Gill C, Hong C, et al., 2013. High-voltage asymmetrical bi-directional device for system-level ESD protection of automotive applications on a BiCMOS technology. Proc 35th Electrical Overstress/Electrostatic Discharge Symp, p.1-8.
[16]Zhang LZ, Wang Y, Wang YZ, et al., 2019. Improved turn-on behavior in a diode-triggered silicon-controlled rectifier for high-speed electrostatic discharge protection. Sci China Inform Sci, 62(6):62402. doi: 10.1007/s11432-017-9427-1
[17]Zheng YF, Jin XL, Wang Y, et al., 2019. Island diodes triggering SCR in waffle layout with high failure current for HV ESD protection. Sol-State Electron, 152:17-23. doi: 10.1016/j.sse.2018.11.001
Open peer comments: Debate/Discuss/Question/Opinion
<1>