Full Text:   <5710>

Summary:  <1645>

CLC number: TP391

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2021-04-01

Cited: 0

Clicked: 6653

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Di Xie

https://orcid.org/0000-0001-8065-5901

Shiliang Pu

https://orcid.org/0000-0001-5269-7821

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2021 Vol.22 No.5 P.638-651

http://doi.org/10.1631/FITEE.2000567


Unsupervised object detection with scene-adaptive concept learning


Author(s):  Shiliang Pu, Wei Zhao, Weijie Chen, Shicai Yang, Di Xie, Yunhe Pan

Affiliation(s):  Hikvision Research Institute, Hangzhou 310051, China; more

Corresponding email(s):   xiedi@hikvision.com

Key Words:  Visual knowledge, Unsupervised video object detection, Scene-adaptive learning


Shiliang Pu, Wei Zhao, Weijie Chen, Shicai Yang, Di Xie, Yunhe Pan. Unsupervised object detection with scene-adaptive concept learning[J]. Frontiers of Information Technology & Electronic Engineering, 2021, 22(5): 638-651.

@article{title="Unsupervised object detection with scene-adaptive concept learning",
author="Shiliang Pu, Wei Zhao, Weijie Chen, Shicai Yang, Di Xie, Yunhe Pan",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="22",
number="5",
pages="638-651",
year="2021",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2000567"
}

%0 Journal Article
%T Unsupervised object detection with scene-adaptive concept learning
%A Shiliang Pu
%A Wei Zhao
%A Weijie Chen
%A Shicai Yang
%A Di Xie
%A Yunhe Pan
%J Frontiers of Information Technology & Electronic Engineering
%V 22
%N 5
%P 638-651
%@ 2095-9184
%D 2021
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2000567

TY - JOUR
T1 - Unsupervised object detection with scene-adaptive concept learning
A1 - Shiliang Pu
A1 - Wei Zhao
A1 - Weijie Chen
A1 - Shicai Yang
A1 - Di Xie
A1 - Yunhe Pan
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 22
IS - 5
SP - 638
EP - 651
%@ 2095-9184
Y1 - 2021
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2000567


Abstract: 
Object detection is one of the hottest research directions in computer vision, has already made impressive progress in academia, and has many valuable applications in the industry. However, the mainstream detection methods still have two shortcomings: (1) even a model that is well trained using large amounts of data still cannot generally be used across different kinds of scenes; (2) once a model is deployed, it cannot autonomously evolve along with the accumulated unlabeled scene data. To address these problems, and inspired by visual knowledge theory, we propose a novel scene-adaptive evolution unsupervised video object detection algorithm that can decrease the impact of scene changes through the concept of object groups. We first extract a large number of object proposals from unlabeled data through a pre-trained detection model. Second, we build the visual knowledge dictionary of object concepts by clustering the proposals, in which each cluster center represents an object prototype. Third, we look into the relations between different clusters and the object information of different groups, and propose a graph-based group information propagation strategy to determine the category of an object concept, which can effectively distinguish positive and negative proposals. With these pseudo labels, we can easily fine-tune the pre-trained model. The effectiveness of the proposed method is verified by performing different experiments, and the significant improvements are achieved.

基于场景自适应概念学习的无监督目标检测

浦世亮1,赵暐1,陈伟杰1,杨世才1,谢迪1,潘云鹤2
1海康威视研究院,中国杭州市,310051
2浙江大学计算机科学与技术学院,中国杭州市,310027
摘要:目标检测是机器视觉领域最热门的研究方向之一,在学术界已取得令人瞩目的成果,在工业界也存在许多有价值的应用。然而,主流的检测方法仍有两个缺陷:(1)即使是经过大量数据有效训练的模型,仍然无法很好地泛化到新场景中;(2)模型一旦部署到位,则无法随着不断累积的无标注数据自主进化。为克服上述问题,受视觉知识理论启发,提出一种场景自适应进化的无监督视频目标检测算法,该算法可利用目标群体概念,降低场景变化带来的不利影响。首先通过预训练检测模型从无标注数据中提取大量候选目标,然后对候选目标聚类,构建目标概念的视觉知识字典,其中各个聚类中心代表一种目标原型。其次,通过研究不同目标簇和不同群体目标信息之间的关系,提出基于图的群体信息传播策略以判断目标概念的归属,可有效区分候选目标。最终,利用收集到的伪类标微调预训练模型,实现算法对新场景的自适应。算法的有效性得到多个不同实验的验证,且性能提升显著。

关键词:视觉知识;无监督视频目标检测;场景自适应学习

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Chen MH, Kira Z, AlRegib G, et al., 2019. Temporal attentive alignment for large-scale video domain adaptation. Proc IEEE/CVF Int Conf on Computer Vision, p.6320-6329.

[2]Cordts M, Omran M, Ramos S, et al., 2016. The cityscapes dataset for semantic urban scene understanding. Proc IEEE Conf on Computer Vision and Pattern Recognition, p.3213-3223.

[3]Croitoru I, Bogolin SV, Leordeanu M, 2017. Unsupervised learning from video to detect foreground objects in single images. Proc IEEE Int Conf on Computer Vision, p.4345-4353.

[4]Dai JF, Li Y, He KM, et al., 2016. R-FCN: object detection via region-based fully convolutional networks. Proc 30th Int Conf on Neural Information Processing Systems, p.379-387.

[5]Deng JJ, Pan YW, Yao T, et al., 2020. Single shot video object detector. IEEE Trans Multim, 23:846-858.

[6]Feichtenhofer C, Pinz A, Zisserman A, 2017. Detect to track and track to detect. Proc IEEE Int Conf on Computer Vision, p.3057-3065.

[7]Geiger A, Lenz P, Urtasun R, 2012. Are we ready for autonomous driving? The KITTI vision benchmark suite. Proc IEEE Conf on Computer Vision and Pattern Recognition, p.3354-3361.

[8]Girshick R, 2015. Fast R-CNN. Proc IEEE Int Conf on Computer Vision, p.1440-1448.

[9]Girshick R, Donahue J, Darrell T, et al., 2014. Rich feature hierarchies for accurate object detection and semantic segmentation. Proc IEEE Conf on Computer Vision and Pattern Recognition, p.580-587.

[10]Guo CX, Fan B, Gu J, et al., 2019. Progressive sparse local attention for video object detection. Proc IEEE/CVF Int Conf on Computer Vision, p.3908-3917.

[11]Han W, Khorrami P, Le Paine T, et al., 2016. Seq-NMS for video object detection. https://arxiv.org/abs/1602.08465v1

[12]He ZW, Zhang L, 2019. Multi-adversarial faster-RCNN for unrestricted object detection. Proc IEEE/CVF Int Conf on Computer Vision, p.6667-6676.

[13]Htike KK, Hogg DC, 2014. Efficient non-iterative domain adaptation of pedestrian detectors to video scenes. Proc 22nd Int Conf on Pattern Recognition, p.654-659.

[14]Johnson-Roberson M, Barto C, Mehta R, et al., 2016. Driving in the matrix: can virtual worlds replace human-generated annotations for real world tasks? Proc IEEE Int Conf on Robotics and Automation, p.746-753.

[15]Kang K, Ouyang WL, Li HS, et al., 2016. Object detection from video tubelets with convolutional neural networks. Proc IEEE Conf on Computer Vision and Pattern Recognition, p.817-825.

[16]Kang K, Li HS, Xiao T, et al., 2017. Object detection in videos with tubelet proposal networks. Proc IEEE Conf on Computer Vision and Pattern Recognition, p.889-897.

[17]Kang K, Li HS, Yan JJ, et al., 2018. T-CNN: tubelets with convolutional neural networks for object detection from videos. IEEE Trans Circ Syst Video Technol, 28(10):2896-2907.

[18]Khodabandeh M, Vahdat A, Ranjbar M, et al., 2019. A robust learning approach to domain adaptive object detection. Proc IEEE/CVF Int Conf on Computer Vision, p.480-490.

[19]Kipf TN, Welling M, 2017. Semi-supervised classification with graph convolutional networks. https://arxiv.org/abs/1609.02907

[20]Kwak S, Cho M, Laptev I, et al., 2015. Unsupervised object discovery and tracking in video collections. Proc IEEE Int Conf on Computer Vision, p.3173-3181.

[21]Lahiri A, Ragireddy SC, Biswas P, et al., 2019. Unsupervised adversarial visual level domain adaptation for learning video object detectors from images. Proc IEEE Winter Conf on Applications of Computer Vision, p.1807-1815.

[22]Law H, Deng J, 2018. CornerNet: detecting objects as paired keypoints. Proc 15th European Conf on Computer Vision, p.765-781.

[23]Li D, Hung WC, Huang JB, et al., 2016. Unsupervised visual representation learning by graph-based consistent constraints. Proc 14th European Conf on Computer Vision, p.678-694.

[24]Li JN, Liang XD, Shen SM, et al., 2018. Scale-aware fast R-CNN for pedestrian detection. IEEE Trans Multim, 20(4):985-996.

[25]Li NJ, Chang FL, Liu CS, 2020. Spatial-temporal cascade autoencoder for video anomaly detection in crowded scenes. IEEE Trans Multim, 23:203-215.

[26]Lin TY, Dollár P, Girshick R, et al., 2017a. Feature pyramid networks for object detection. Proc IEEE Conf on Computer Vision and Pattern Recognition, p.936-944.

[27]Lin TY, Goyal P, Girshick R, et al., 2017b. Focal loss for dense object detection. Proc IEEE Int Conf on Computer Vision, p.2999-3007.

[28]Liu W, Anguelov D, Erhan D, et al., 2016. SSD: single shot multibox detector. Proc 14th European Conf on Computer Vision, p.21-37.

[29]Ma XL, Zhu XT, Gong SG, et al., 2017. Person re-identification by unsupervised video matching. Patt Recogn, 65:197-210.

[30]Pan YH, 2016. Heading toward artificial intelligence 2.0. Engineering, 2(4):409-413.

[31]Pan YH, 2019. On visual knowledge. Front Inform Technol Electron Eng, 20(8):1021-1025.

[32]Pan YH, 2020. Miniaturized five fundamental issues about visual knowledge. Front Inform Technol Electron Eng, online.

[33]Pang JM, Chen K, Shi JP, et al., 2019. Libra R-CNN: towards balanced learning for object detection. Proc IEEE/CVF Conf on Computer Vision and Pattern Recognition, p.821-830.

[34]Redmon J, Farhadi A, 2017. YOLO9000: better, faster, stronger. Proc IEEE Conf on Computer Vision and Pattern Recognition, p.6517-6525.

[35]Redmon J, Divvala S, Girshick R, et al., 2016. You only look once: unified, real-time object detection. Proc IEEE Conf on Computer Vision and Pattern Recognition, p.779-788.

[36]Ren SQ, He KM, Girshick R, et al., 2015. Faster R-CNN: towards real-time object detection with region proposal networks. Proc 28th Int Conf on Neural Information Processing Systems, p.91-99.

[37]Shen ZQ, Maheshwari H, Yao WC, et al., 2019. SCL: towards accurate domain adaptive object detection via gradient detach based stacked complementary losses. https://arxiv.org/abs/1911.02559

[38]Shvets M, Liu W, Berg A, 2019. Leveraging long-range temporal relationships between proposals for video object detection. Proc IEEE/CVF Int Conf on Computer Vision, p.9755-9763.

[39]Subramaniam A, Nambiar A, Mittal A, 2019. Co-segmentation inspired attention networks for video-based person re-identification. Proc IEEE/CVF Int Conf on Computer Vision, p.562-572.

[40]Tang K, Ramanathan V, Li FF, et al., 2012. Shifting weights: adapting object detectors from image to video. Proc 25th Int Conf on Neural Information Processing Systems, p.638-646.

[41]Veličcković P, Casanova A, Lio P, et al., 2018. Graph attention networks. https://arxiv.org/abs/1710.10903

[42]Wang HW, Leskovec J, 2019. Unifying graph convolutional neural networks and label propagation. https://arxiv.org/abs/2002.06755

[43]Wang SG, Cheng J, Liu HJ, et al., 2018. Pedestrian detection via body part semantic and contextual information with DNN. IEEE Trans Multim, 20(11):3148-3159.

[44]Wang SY, Zhou YC, Yan JJ, et al., 2018. Fully motion-aware network for video object detection. Proc 15th European Conf on Computer Vision, p.557-573.

[45]Wang SY, Group A, Lu HC, et al., 2019. Fast object detection in compressed video. Proc IEEE/CVF Int Conf on Computer Vision, p.7103-7112.

[46]Wu F, Souza A, Zhang TY, et al., 2019. Simplifying graph convolutional networks. Proc 36th Int Conf on Machine Learning, p.6861-6871.

[47]Xiao FY, Lee YJ, 2016. Track and segment: an iterative unsupervised approach for video object proposals. Proc IEEE Conf on Computer Vision and Pattern Recognition, p.933-942.

[48]Xiao FY, Lee YJ, 2018. Video object detection with an aligned spatial-temporal memory. Proc 15th European Conf on Computer Vision, p.494-510.

[49]Yu HK, Guo DZ, Yan ZP, et al., 2018. Unsupervised learning for large-scale fiber detection and tracking in microscopic material images. https://arxiv.org/abs/1805.10256

[50]Zhang XS, Wan F, Liu C, et al., 2019. FreeAnchor: learning to match anchors for visual object detection. https://arxiv.org/abs/1909.02466

[51]Zhu ML, Liu M, 2018. Mobile video object detection with temporally-aware feature maps. Proc IEEE/CVF Conf on Computer Vision and Pattern Recognition, p.5686-5695.

[52]Zhu XG, Pang JM, Yang CY, et al., 2019. Adapting object detectors via selective cross-domain alignment. Proc IEEE/CVF Conf on Computer Vision and Pattern Recognition, p.687-696.

[53]Zhu XZ, Wang YJ, Dai JF, et al., 2017. Flow-guided feature aggregation for video object detection. Proc IEEE Int Conf on Computer Vision, p.408-417.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE