Full Text:   <1770>

Summary:  <956>

CLC number: O439

On-line Access: 2021-10-08

Received: 2020-08-21

Revision Accepted: 2020-12-17

Crosschecked: 2021-01-25

Cited: 0

Clicked: 3227

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Wei-gong Zhang

https://orcid.org/0000-0003-3969-5607

Ke Si

https://orcid.org/0000-0001-8328-4325

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2021 Vol.22 No.10 P.1277-1288

http://doi.org/10.1631/FITEE.2000422


Deep learning based wavefront sensor for complex wavefront detection in adaptive optical microscopes


Author(s):  Shuwen Hu, Lejia Hu, Wei Gong, Zhenghan Li, Ke Si

Affiliation(s):  Department of Neurology of the First Affiliated Hospital, State Key Laboratory of Modern Optical Instrumentation, Zhejiang University School of Medicine, Hangzhou 310009, China; more

Corresponding email(s):   weigong@zju.edu.cn, kesi@zju.edu.cn

Key Words:  Adaptive optics, Wavefront detection, Deep learning, Zernike coefficients, Microscopy


Share this article to: More |Next Article >>>

Shuwen Hu, Lejia Hu, Wei Gong, Zhenghan Li, Ke Si. Deep learning based wavefront sensor for complex wavefront detection in adaptive optical microscopes[J]. Frontiers of Information Technology & Electronic Engineering, 2021, 22(10): 1277-1288.

@article{title="Deep learning based wavefront sensor for complex wavefront detection in adaptive optical microscopes",
author="Shuwen Hu, Lejia Hu, Wei Gong, Zhenghan Li, Ke Si",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="22",
number="10",
pages="1277-1288",
year="2021",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2000422"
}

%0 Journal Article
%T Deep learning based wavefront sensor for complex wavefront detection in adaptive optical microscopes
%A Shuwen Hu
%A Lejia Hu
%A Wei Gong
%A Zhenghan Li
%A Ke Si
%J Frontiers of Information Technology & Electronic Engineering
%V 22
%N 10
%P 1277-1288
%@ 2095-9184
%D 2021
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2000422

TY - JOUR
T1 - Deep learning based wavefront sensor for complex wavefront detection in adaptive optical microscopes
A1 - Shuwen Hu
A1 - Lejia Hu
A1 - Wei Gong
A1 - Zhenghan Li
A1 - Ke Si
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 22
IS - 10
SP - 1277
EP - 1288
%@ 2095-9184
Y1 - 2021
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2000422


Abstract: 
The Shack-Hartmann wavefront sensor (SHWS) is an essential tool for wavefront sensing in adaptive optical microscopes. However, the distorted spots induced by the complex wavefront challenge its detection performance. Here, we propose a deep learning based wavefront detection method which combines point spread function image based Zernike coefficient estimation and wavefront stitching. Rather than using the centroid displacements of each micro-lens, this method first estimates the zernike coefficients of local wavefront distribution over each micro-lens and then stitches the local wavefronts for reconstruction. The proposed method can offer low root mean square wavefront errors and high accuracy for complex wavefront detection, and has potential to be applied in adaptive optical microscopes.

自适应光学显微中基于深度学习的复杂波前探测方法

胡淑文1,2,胡乐佳1,2,龚薇3,李政翰1,2,斯科1,2,3
1浙江大学医学院,现代光学仪器国家重点实验室,浙江大学医学院附属第一医院神经内科,中国杭州市,310009
2浙江大学光电科学与工程学院,中国杭州市,310027
3浙江大学脑科学与脑医学学院,中国医学科学院情感和情感障碍的脑机制创新单元,教育部脑与脑机融合前沿科学中心,,中国杭州市,310058
摘要:Shack-Hartmann波前传感器(SHWS)是自适应光学显微镜中用于波前传感的重要工具。然而,由复杂波前相位分布引起的畸变点阵限制了其探测性能。本文提出一种基于深度学习的波前探测方法,该方法结合了基于点扩散函数图像的泽尼克(Zernike)系数估计和波前相位分布拼接。该方法不仅仅使用每个子孔径的质心位移,而是通过子孔径的点扩散函数分布估计局部波前对应的Zernike系数,然后拼接局部波前进行重建。本文所提方法可实现高精度的复杂波前检测,获得的波前残差均方根误差值显著降低,在自适应光学显微中具有极大应用潜力。

关键词:自适应光学;波前探测;深度学习;泽尼克系数;显微成像

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Booth MJ, 2014. Adaptive optical microscopy: the ongoing quest for a perfect image. Light Sci Appl, 3(4):e165.

[2]Booth MJ, Neil MAA, Juškaitis R, et al., 2002. Adaptive aberration correction in a confocal microscope. Proc Nat Acad Sci, 99(9):5788-5792.

[3]Cheng SF, Li HH, Luo YQ, et al., 2019. Artificial intelligence-assisted light control and computational imaging through scattering media. J Innov Opt Health Sci, 12(4):193006.

[4]Cornea A, Conn PM, 2014. Fluorescence Microscopy: Super Resolution and Other Novel Techniques. Elsevier, London, UK, p.249.

[5]Cui M, 2011. Parallel wavefront optimization method for focusing light through random scattering media. Opt Lett, 36(6):870-872.

[6]Cumming BP, Gu M, 2020. Direct determination of aberration functions in microscopy by an artificial neural network. Opt Expr, 28(10):14511-14521.

[7]Dai GM, 2008. Wavefront Optics for Vision Correction. SPIE Press, Bellingham, USA.

[8]Drozdzal M, Vorontsov E, Chartrand G, et al., 2016. The importance of skip connections in biomedical image segmentation. Int Workshop on Deep Learning in Medical Image Analysis and Int Workshop on Large-Scale Annotation of Biomedical Data and Expert Label Synthesis, p.179-187.

[9]Dubose TB, Gardner DF, Watnik AT, 2020. Intensity-enhanced deep network wavefront reconstruction in Shack–Hartmann sensors. Opt Lett, 45(7):1699-1702.

[10]Gómez SLS, González-Gutiérrez C, Alonso ED, et al., 2018. Improving adaptive optics reconstructions with a deep learning approach. Int Conf on Hybrid Artificial Intelligence Systems, p.74-83.

[11]Hu LJ, Hu SW, Gong W, et al., 2019. Learning-based Shack-Hartmann wavefront sensor for high-order aberration detection. Opt Expr, 27(23):33504-33517.

[12]Hu LJ, Hu SW, Li YN, et al., 2020. Reliability of wavefront shaping based on coherent optical adaptive technique in deep tissue focusing. J Biophoton, 13(1):e201900245.

[13]Hu SW, Hu LJ, Zhang BW, et al., 2020. Simplifying the detection of optical distortions by machine learning. J Innov Opt Health Sci, 13(3):2040001.

[14]Ji N, 2017. Adaptive optical fluorescence microscopy. Nat Methods, 14(4):374-280.

[15]Jin YC, Zhang YY, Hu LJ, et al., 2018. Machine learning guided rapid focusing with sensor-less aberration corrections. Opt Expr, 26(23):30162-30171.

[16]Li ZH, Yu ZP, Hui H, et al., 2020. Edge enhancement through scattering media enabled by optical wavefront shaping. Photon Res, 8(6):954-962.

[17]Liu R, Li ZY, Marvin JS, et al., 2019. Direct wavefront sensing enables functional imaging of infragranular axons and spines. Nat Methods, 16(7):615-618.

[18]Liu TL, Upadhyayula S, Milkie DE, et al., 2018. Observing the cell in its native state: imaging subcellular dynamics in multicellular organisms. Science, 360(6386):eaaq1392.

[19]Mahajan VN, Dai GM, 2007. Orthonormal polynomials in wavefront analysis: analytical solution. J Opt Soc Am A, 24(9):2994-3016.

[20]Nishizaki Y, Valdivia M, Horisaki R, et al., 2019. Deep learning wavefront sensing. Opt Expr, 27(1):240-251.

[21]Paine SW, Fienup JR, 2018. Machine learning for improved image-based wavefront sensing. Opt Lett, 43(6):1235-1238.

[22]Park JH, Kong LJ, Zhou YF, et al., 2017. Large-field-of-view imaging by multi-pupil adaptive optics. Nat Methods, 14(6):581-583.

[23]Rodríguez C, Ji N, 2018. Adaptive optical microscopy for neurobiology. Curr Opin Neurobiol, 50:83-91.

[24]Schott S, Bertolotti J, Léger JF, et al., 2015. Characterization of the angular memory effect of scattered light in biological tissues. Opt Expr, 23(10):13505-13516.

[25]Swanson R, Lamb M, Correia C, et al., 2018. Wavefront reconstruction and prediction with convolutional neural networks. Adaptive Optics Systems VI, Article 10703F.

[26]Tang JY, Germain RN, Cui M, 2012. Superpenetration optical microscopy by iterative multiphoton adaptive compensation technique. Proc Nat Acad Sci, 109(22):8434-8439.

[27]Vanberg PO, de Xivry GO, Absil O, et al., 2019. Machine learning for image-based wavefront sensing. 33rd Conf on Neural Information Processing Systems, p.1-6.

[28]Wang BK, Barbiero M, Zhang QM, et al., 2019. Super-resolution optical microscope: principle, instrumentation, and application. Front Inform Technol Electron Eng, 20(5):608-630.

[29]Wang K, Milkie DE, Saxena A, et al., 2014. Rapid adaptive optical recovery of optimal resolution over large volumes. Nat Methods, 11(6):625-628.

[30]Wang K, Sun WZ, Richie CT, et al., 2015. Direct wavefront sensing for high-resolution in vivo imaging in scattering tissue. Nat Commun, 6:7276.

[31]Yoon J, Lee M, Lee K, et al., 2015. Optogenetic control of cell signaling pathway through scattering skull using wavefront shaping. Sci Rep, 5:13289.

[32]Yu ZP, Xia MY, Li HH, et al., 2019. Implementation of digital optical phase conjugation with embedded calibration and phase rectification. Sci Rep, 9(1):1537.

[33]Zeng ZP, Xie H, Chen L, et al., 2017. Computational methods in super-resolution microscopy. Front Inform Technol Electron Eng, 18(9):1222-1235.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2022 Journal of Zhejiang University-SCIENCE