Full Text:   <18504>

Summary:  <448>

CLC number: TP242.6

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2022-07-21

Cited: 0

Clicked: 2769

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Hai-bin Duan

https://orcid.org/0000-0002-4926-3202

Yang YUAN

https://orcid.‍org/0000-0002-0715-987X

Yimin DENG

https://orcid.‍org/0000-0003-1533-3839

Sida LUO

https://orcid.‍org/0000-0002-5673-6100

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2022 Vol.23 No.7 P.1020-1031

http://doi.org/10.1631/FITEE.2100559


Distributed game strategy for unmanned aerial vehicle formation with external disturbances and obstacles


Author(s):  Yang YUAN, Yimin DENG, Sida LUO, Haibin DUAN

Affiliation(s):  State Key Laboratory of Virtual Reality Technology and Systems, School of Autonomous Science and Electrical Engineering, Beihang University, Beijing100083, China; more

Corresponding email(s):   yyuan@buaa.edu.cn, ymdeng@buaa.edu.cn, s.luo@buaa.edu.cn, hbduan@buaa.edu.cn

Key Words:  Distributed game strategy, Unmanned aerial vehicle (UAV), Distributed model predictive control (MPC), Levy flight based pigeon inspired optimization (LFPIO), Non-singular fast terminal sliding mode observer (NFTSMO), Obstacle avoidance strategy


Yang YUAN, Yimin DENG, Sida LUO, Haibin DUAN. Distributed game strategy for unmanned aerial vehicle formation with external disturbances and obstacles[J]. Frontiers of Information Technology & Electronic Engineering, 2022, 23(7): 1020-1031.

@article{title="Distributed game strategy for unmanned aerial vehicle formation with external disturbances and obstacles",
author="Yang YUAN, Yimin DENG, Sida LUO, Haibin DUAN",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="23",
number="7",
pages="1020-1031",
year="2022",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2100559"
}

%0 Journal Article
%T Distributed game strategy for unmanned aerial vehicle formation with external disturbances and obstacles
%A Yang YUAN
%A Yimin DENG
%A Sida LUO
%A Haibin DUAN
%J Frontiers of Information Technology & Electronic Engineering
%V 23
%N 7
%P 1020-1031
%@ 2095-9184
%D 2022
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2100559

TY - JOUR
T1 - Distributed game strategy for unmanned aerial vehicle formation with external disturbances and obstacles
A1 - Yang YUAN
A1 - Yimin DENG
A1 - Sida LUO
A1 - Haibin DUAN
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 23
IS - 7
SP - 1020
EP - 1031
%@ 2095-9184
Y1 - 2022
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2100559


Abstract: 
We investigate a distributed game strategy for unmanned aerial vehicle (UAV) formations with external disturbances and obstacles. The strategy is based on a distributed model predictive control (MPC) framework and levy flight based pigeon inspired optimization (LFPIO). First, we propose a non-singular fast terminal sliding mode observer (NFTSMO) to estimate the influence of a disturbance, and prove that the observer converges in fixed time using a Lyapunov function. Second, we design an obstacle avoidance strategy based on topology reconstruction, by which the UAV can save energy and safely pass obstacles. Third, we establish a distributed MPC framework where each UAV exchanges messages only with its neighbors. Further, the cost function of each UAV is designed, by which the UAV formation problem is transformed into a game problem. Finally, we develop LFPIO and use it to solve the Nash equilibrium. Numerical simulations are conducted, and the efficiency of LFPIO based distributed MPC is verified through comparative simulations.

具有外部干扰和障碍物的无人机编队分布式博弈策略

袁洋1,邓亦敏1,罗斯达2,段海滨1,3
1北京航空航天大学自动化科学与电气工程学院虚拟现实技术与系统国家重点实验室,中国北京市,100083
2北京航空航天大学机械工程及自动化学院,中国北京市,100191
3鹏城实验室,中国深圳市,518000
摘要:本文研究了具有外部干扰和障碍物的无人机编队分布式博弈策略,该策略基于分布式模型预测控制(MPC)框架和基于Levy飞行的鸽群优化算法(LFPIO)。首先,提出一种非奇异快速终端滑模观测器(NFTSMO)估计无人机受扰动的影响,并利用Lyapunov函数证明该观测器在固定时间内收敛。其次,设计一种基于拓扑重构的避障策略,使无人机能够以较小能量消耗安全通过障碍物。然后,建立一个分布式MPC框架,该框架中每架无人机仅与邻居交换消息,通过设计分布式MPC代价函数,将无人机编队问题转化为博弈问题,并利用基于Levy飞行的鸽群优化算法求解纳什均衡。最后,利用数值仿真对比实验验证所提策略的有效性。

关键词:分布式博弈策略;无人机;分布式模型预测控制;基于Levy飞行的鸽群优化算法;非奇异快速终端滑模观测器;避障策略

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Bhat SP, Bernstein DS, 2000. Finite-time stability of continuous autonomous systems. SIAM J Contr Optim, 38(3):751-766.

[2]Czyżniewski M, Łangowski R, 2022. A robust sliding mode observer for non-linear uncertain biochemical systems. ISA Trans, 123:25-45.

[3]Dong LF, Chen YZ, Qu XJ, 2016. Formation control strategy for nonholonomic intelligent vehicles based on virtual structure and consensus approach. Proc Eng, 137:415-424.

[4]Duan HB, Qiao PX, 2014. Pigeon-inspired optimization: a new swarm intelligence optimizer for air robot path planning. Int J Intell Comput Cybern, 7(1):24-37.

[5]Feng X, Muramatsu H, Katsura S, 2021. Differential evolutionary algorithm with local search for the adaptive periodic-disturbance observer adjustment. IEEE Trans Ind Electron, 68(12):12504-12512.

[6]Gu DB, 2008. A differential game approach to formation control. IEEE Trans Contr Syst Technol, 16(1):85-93.

[7]He LL, Bai P, Liang XL, et al., 2018. Feedback formation control of UAV swarm with multiple implicit leaders. Aerosp Sci Technol, 72:327-334.

[8]Huo MZ, Duan HB, Fan YM, 2021. Pigeon-inspired circular formation control for multi-UAV system with limited target information. Guid Navig Contr, 1(1):2150004.

[9]Jond HB, Nabiyev V, 2019. On the finite horizon Nash equilibrium solution in the differential game approach to formation control. J Syst Eng Electron, 30(6):1233-1242.

[10]Kalsi K, Lian JM, Hui SF, et al., 2010. Sliding-mode observers for systems with unknown inputs: a high-gain approach. Automatica, 46(2):347-353.

[11]Labbadi M, Cherkaoui M, 2019. Robust adaptive backstepping fast terminal sliding mode controller for uncertain quadrotor UAV. Aerosp Sci Technol, 93:105306.

[12]Labbadi M, Cherkaoui M, 2020. Robust adaptive nonsingular fast terminal sliding-mode tracking control for an uncertain quadrotor UAV subjected to disturbances. ISA Trans, 99:290-304.

[13]Lee G, Chwa D, 2018. Decentralized behavior-based formation control of multiple robots considering obstacle avoidance. Intel Serv Robot, 11(1):127-138.

[14]Lee SM, Kim H, Myung H, et al., 2015. Cooperative coevolutionary algorithm-based model predictive control guaranteeing stability of multirobot formation. IEEE Trans Contr Syst Technol, 23(1):37-51.

[15]Li JQ, Chen S, Li CY, et al., 2021. Distributed game strategy for formation flying of multiple spacecraft with disturbance rejection. IEEE Trans Aerosp Electron Syst, 57(1):119-128.

[16]Li W, Yang BW, Song GH, et al., 2021. Dynamic value iteration networks for the planning of rapidly changing UAV swarms. Front Inform Technol Electron Eng, 22(5):687-696.

[17]Li YB, Hu XM, 2022. A differential game approach to intrinsic formation control. Automatica, 136:110077.

[18]Lin W, 2014. Distributed UAV formation control using differential game approach. Aerosp Sci Technol, 35:54-62.

[19]Liu JC, Wu ZX, Yu JZ, et al., 2021. Cooperative target tracking in aquatic environment using dual robotic dolphins. IEEE Trans Syst Man Cybern Syst, 51(8):4782-4792.

[20]Luo YH, Bai A, Zhang HG, 2021. Distributed formation control of UAVs for circumnavigating a moving target in three-dimensional space. Guid Navig Contr, 1(3):2150014.

[21]Olfati-Saber R, 2006. Flocking for multi-agent dynamic systems: algorithms and theory. IEEE Trans Autom Contr, 51(3):401-420.

[22]Qiu HX, Duan HB, 2020. A multi-objective pigeon-inspired optimization approach to UAV distributed flocking among obstacles. Inform Sci, 509:515-529.

[23]Ran MP, Xie LH, Li JC, 2019. Time-varying formation tracking for uncertain second-order nonlinear multi-agent systems. Front Inform Technol Electron Eng, 20(1):76-87.

[24]Ruan WY, Duan HB, 2020. Multi-UAV obstacle avoidance control via multi-objective social learning pigeon-inspired optimization. Front Inform Technol Electron Eng, 21(5):740-748.

[25]Tan GG, Zhuang JY, Zou J, et al., 2021. Coordination control for multiple unmanned surface vehicles using hybrid behavior-based method. Ocean Eng, 232:109147.

[26]Trinh MH, van Tran Q, van Vu D, et al., 2021. Robust tracking control of bearing-constrained leader-follower formation. Automatica, 131:109733.

[27]Wang AJ, Liao XF, Dong T, 2018. Fractional-order follower observer design for tracking consensus in second-order leader multi-agent systems: periodic sampled-based event-triggered control. J Franklin Inst, 355(11):4618-4628.

[28]Wang B, Shen YY, Zhang YM, 2020. Active fault-tolerant control for a quadrotor helicopter against actuator faults and model uncertainties. Aerosp Sci Technol, 99:105745.

[29]Wang X, Xu B, Cheng YX, et al., 2022. Robust adaptive learning control of space robot for target capturing using neural network. IEEE Trans Neur Netw Learn Syst, early access.

[30]Wang YX, Zhang T, Cai ZH, et al., 2020. Multi-UAV coordination control by chaotic grey wolf optimization based distributed MPC with event-triggered strategy. Chin J Aeronaut, 33(11):2877-2897.

[31]Wei LL, Chen M, Li T, 2021. Disturbance-observer-based formation-containment control for UAVs via distributed adaptive event-triggered mechanisms. J Franklin Inst, 358(10):5305-5333.

[32]Xia LN, Li Q, Song RZ, et al., 2022. Leader-follower time-varying output formation control of heterogeneous systems under cyber attack with active leader. Inform Sci, 585:24-40.

[33]Xiong Y, Saif M, 2001. Sliding mode observer for nonlinear uncertain systems. IEEE Trans Autom Contr, 46(12):2012-2017.

[34]Yang HY, Yin S, Han HG, et al., 2022. Sparse actuator and sensor attacks reconstruction for linear cyber-physical systems with sliding mode observer. IEEE Trans Ind Inform, 18(6):3873-3884.

[35]Yang J, Wang XM, Baldi S, et al., 2019. A software-in-the-loop implementation of adaptive formation control for fixed-wing UAVs. IEEE/CAA J Autom Sin, 6(5):1230-1239.

[36]Yu Y, Wang HL, Liu SM, et al., 2021. Distributed multi-agent target tracking: a Nash-combined adaptive differential evolution method for UAV systems. IEEE Trans Veh Technol, 70(8):8122-8133.

[37]Zhang DF, Duan HB, Yang YJ, 2017. Active disturbance rejection control for small unmanned helicopters via Levy flight-based pigeon-inspired optimization. Aircraft Eng Aerosp Technol, 89(6):946-952.

[38]Zhao J, Sun JM, Cai ZH, et al., 2022. Distributed coordinated control scheme of UAV swarm based on heterogeneous roles. Chin J Aeronaut, 35(1):81-97.

[39]Zheng Z, Cai SC, 2021. A collaborative target tracking algorithm for multiple UAVs with inferior tracking capabilities. Front Inform Technol Electron Eng, 22(10):1334-1350.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE