Full Text:   <303>

Summary:  <11>

CLC number: 

On-line Access: 2022-07-21

Received: 2022-02-14

Revision Accepted: 2022-07-21

Crosschecked: 2022-04-23

Cited: 0

Clicked: 135

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Yu LIU

https://orcid.org/0000-0002-5216-3181

Zhi LI

https://orcid.org/0000-0002-8061-7486

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2022 Vol.23 No.7 P.1002-1009

http://doi.org/10.1631/FITEE.2200055


Prospects for multi-agent collaboration and gaming: challenge, technology, and application


Author(s):  Yu LIU, Zhi LI, Zhizhuo JIANG, You HE

Affiliation(s):  Department of Electronic Engineering, Tsinghua University, Beijing 100084, China; more

Corresponding email(s):   liuyu77360132@126.com, zhilizl@sz.tsinghua.edu.cn

Key Words: 


Yu LIU, Zhi LI, Zhizhuo JIANG, You HE. Prospects for multi-agent collaboration and gaming: challenge, technology, and application[J]. Frontiers of Information Technology & Electronic Engineering, 2022, 23(7): 1002-1009.

@article{title="Prospects for multi-agent collaboration and gaming: challenge, technology, and application",
author="Yu LIU, Zhi LI, Zhizhuo JIANG, You HE",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="23",
number="7",
pages="1002-1009",
year="2022",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2200055"
}

%0 Journal Article
%T Prospects for multi-agent collaboration and gaming: challenge, technology, and application
%A Yu LIU
%A Zhi LI
%A Zhizhuo JIANG
%A You HE
%J Frontiers of Information Technology & Electronic Engineering
%V 23
%N 7
%P 1002-1009
%@ 2095-9184
%D 2022
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2200055

TY - JOUR
T1 - Prospects for multi-agent collaboration and gaming: challenge, technology, and application
A1 - Yu LIU
A1 - Zhi LI
A1 - Zhizhuo JIANG
A1 - You HE
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 23
IS - 7
SP - 1002
EP - 1009
%@ 2095-9184
Y1 - 2022
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2200055


Abstract: 
Recent years have witnessed significant improvement of multi-agent systems for solving various decision-making problems in complex environments and achievement of similar or even better performance than humans. In this study, we briefly review multi-agent collaboration and gaming technology from three perspectives, i.e., task challenges, technology directions, and application areas. We first highlight the typical research problems and challenges in the recent work on multi-agent systems. Then we discuss some of the promising research directions on multi-agent collaboration and gaming tasks. Finally, we provide some focused prospects on the application areas in this field.

多智能体协作与博弈展望:挑战、技术和应用

刘瑜1,李徵2,姜智卓2,何友1
1清华大学电子工程系,中国北京市,100084
2清华大学深圳国际研究生院,中国深圳市,518055
摘要:近年来,多智能体系统在解决复杂环境中各种决策问题方面取得显著进步,并已实现与人类相似甚至更好的决策性能。本文从任务挑战、技术方向和应用领域3个角度简要回顾多智能体协作和博弈相关技术。首先回顾近期多智能体系统工作中的典型研究问题和挑战,然后进一步讨论关于多智能体协作和游戏任务的前沿研究方向,最后对多智能体协作与博弈的应用领域进行重点展望。

关键词:多智能体;博弈论;集体智能;强化学习;智能控制

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Arora S, Doshi P, 2021. A survey of inverse reinforcement learning: challenges, methods and progress. Artif Intell, 297:103500.

[2]Arulkumaran K, Deisenroth MP, Brundage M, et al., 2017. Deep reinforcement learning: a brief survey. IEEE Signal Process Mag, 34(6):26-38.

[3]Bailey JP, Piliouras G, 2019. Multi-agent learning in network zero-sum games is a Hamiltonian system. Proc 18th Int Conf on Autonomous Agents and Multiagent Systems, p.233-241.

[4]Balduzzi D, Racanière S, Martens J, et al., 2018. The mechanics of n-player differentiable games. Proc 35th Int Conf on Machine Learning, p.354-363.

[5]Baltrušaitis T, Ahuja C, Morency LP, 2019. Multimodal machine learning: a survey and taxonomy. IEEE Trans Patt Anal Mach Intell, 41(2):423-443.

[6]Barron EN, 2013. Game Theory: an Introduction. John Wiley & Sons, Hoboken, USA.

[7]Beattie C, Leibo JZ, Teplyashin D, et al., 2016. DeepMind Lab. https://arxiv.org/abs/1612.03801v2

[8]Bellemare MG, Naddaf Y, Veness J, et al., 2013. The arcade learning environment: an evaluation platform for general agents. J Artif Intell Res, 47:253-279.

[9]Berner C, Brockman G, Chan B, et al., 2019. Dota 2 with large scale deep reinforcement learning. https://arxiv.org/abs/1912.06680

[10]Betancourt C, Chen WH, 2021. Deep reinforcement learning for portfolio management of markets with a dynamic number of assets. Expert Syst Appl, 164:114002.

[11]Brockman G, Cheung V, Pettersson L, et al., 2016. OpenAI Gym. https://arxiv.org/abs/1606.01540

[12]Busoniu L, Babuska R, De Schutter B, 2008. A comprehensive survey of multiagent reinforcement learning. IEEE Trans Syst Man Cybern Part C, 38(2):156-172.

[13]Cañizares PC, Merayo MG, Núñez M, et al., 2017. A multi-agent system architecture for statistics managing and soccer forecasting. Proc 2nd IEEE Int Conf on Computational Intelligence and Applications, p.572-576.

[14]Coulom R, 2007. Efficient selectivity and backup operators in Monte-Carlo tree search. Proc 5th Int Conf on Computers and Games, p.72-83.

[15]Das A, Gervet T, Romoff J, et al., 2019. TarMAC: targeted multi-agent communication. Proc 36th Int Conf on Machine Learning, p.1538-1546.

[16]Dionisio JDN, Burns WGIII, Gilbert R, 2013. 3D virtual worlds and the metaverse: current status and future possibilities. ACM Comput Surv, 45(3):34.

[17]Foerster JN, Assael YM, de Freitas N, et al., 2016. Learning to communicate with deep multi-agent reinforcement learning. Proc 30th Int Conf on Neural Information Processing Systems, p.2145-2153.

[18]Georgeff MP, 1988. Communication and interaction in multi-agent planning. In: Bond AH, Gasser L (Eds.), Distributed Artificial Intelligence. Morgan Kaufmann Publishers Inc., San Francisco, USA, p.200-204.

[19]Grigorescu S, Trasnea B, Cocias T, et al., 2020. A survey of deep learning techniques for autonomous driving. J Field Robot, 37(3):362-386.

[20]Hernandez-Leal P, Kaisers M, Baarslag T, et al., 2017. A survey of learning in multiagent environments: dealing with non-stationarity. https://arxiv.org/abs/1707.09183v1

[21]Hoen PJ, Tuyls K, Panait L, et al., 2005. An overview of cooperative and competitive multiagent learning. Proc 1st Int Conf on Learning and Adaption in Multi-Agent Systems, p.1-46.

[22]Hüttenrauch M, Šošić A, Neumann G, 2019. Deep reinforcement learning for swarm systems. J Mach Learn Res, 20(54):1-31.

[23]Jennings NR, Sycara K, Wooldridge M, 1998. A roadmap of agent research and development. Auton Agent Multi-Agent Syst, 1(1):7-38.

[24]Jiang JC, Lu ZQ, 2018. Learning attentional communication for multi-agent cooperation. Proc 32nd Int Conf on Neural Information Processing Systems, p.7265-7275.

[25]Johnson M, Hofmann K, Hutton T, et al., 2016. The Malmo platform for artificial intelligence experimentation. Proc 25th Int Joint Conf on Artificial Intelligence, p.4246-4247.

[26]Kempka M, Wydmuch M, Runc G, et al., 2016. ViZDoom: a doom-based AI research platform for visual reinforcement learning. Proc IEEE Conf on Computational Intelligence and Games, p.1-8.

[27]Kim D, Moon S, Hostallero D, et al., 2019. Learning to schedule communication in multi-agent reinforcement learning. https://arxiv.org/abs/1902.01554

[28]Lagorse J, Paire D, Miraoui A, 2010. A multi-agent system for energy management of distributed power sources. Renewab Energy, 35(1):174-182.

[29]Lazaridou A, Peysakhovich A, Baroni M, 2017. Multi-agent cooperation and the emergence of (natural) language. https://arxiv.org/abs/1612.07182

[30]Leonardos S, Piliouras G, Spendlove K, 2021. Exploration-exploitation in multi-agent competition: convergence with bounded rationality. https://arxiv.org/abs/2106.12928

[31]Li YM, Ren SL, Wu PX, et al., 2021. Learning distilled collaboration graph for multi-agent perception. https://arxiv.org/abs/2111.00643v2

[32]Li ZY, Yuan Q, Luo GY, et al., 2021. Learning effective multi-vehicle cooperation at unsignalized intersection via bandwidth-constrained communication. Proc IEEE 94th Vehicular Technology Conf, p.1-7.

[33]Lin XM, Adams SC, Beling PA, 2019. Multi-agent inverse reinforcement learning for certain general-sum stochastic games. J Artif Intell Res, 66:473-502.

[34]Liu YC, Tian JJ, Glaser N, et al., 2020a. When2com: multi-agent perception via communication graph grouping. Proc IEEE/CVF Conf on Compute Vision and Pattern Recognition, p.4105-4114.

[35]Liu YC, Tian JJ, Ma CY, et al., 2020b. Who2com: collaborative perception via learnable handshake communication. Proc IEEE Int Conf on Robotics and Automation, p.6876-6883.

[36]Mao HY, Gong ZB, Zhang ZC, et al., 2019. Learning multi-agent communication under limited-bandwidth restriction for Internet packet routing. https://arxiv.org/abs/1903.05561

[37]Mazumdar E, Ratliff LJ, Jordan MI, et al., 2020. Policy-gradient algorithms have no guarantees of convergence in linear quadratic games. Proc 19th Int Conf on Autonomous Agents and Multiagent Systems, p.860-868.

[38]Mei SW, Wei W, Liu F, 2017. On engineering game theory with its application in power systems. Contr Theory Technol, 15(1):1-12.

[39]Mordatch I, Abbeel P, 2018. Emergence of grounded compositional language in multi-agent populations. https://arxiv.org/abs/1703.04908

[40]Nachum O, Gu SX, Lee H, et al., 2018. Data-efficient hierarchical reinforcement learning. Proc 32nd Int Conf on Neural Information Processing Systems, p.3307-3317.

[41]Neumeyer C, Oliehoek FA, Gavrila DM, 2021. General-sum multi-agent continuous inverse optimal control. IEEE Robot Autom Lett, 6(2):3429-3436.

[42]Nguyen TT, Nguyen ND, Nahavandi S, 2020. Deep reinforcement learning for multiagent systems: a review of challenges, solutions, and applications. IEEE Trans Cybern, 50(9):3826-3839.

[43]Oroojlooy A, Hajinezhad D, 2019. A review of cooperative multi-agent deep reinforcement learning. https://arxiv.org/abs/1908.03963

[44]Peng P, Wen Y, Yang YD, et al., 2017. Multiagent bidirectionally-coordinated nets: emergence of human-level coordination in learning to play StarCraft combat games. https://arxiv.org/abs/1703.10069

[45]Polydoros AS, Nalpantidis L, 2017. Survey of model-based reinforcement learning: applications on robotics. J Intell Robot Syst, 86(2):153-173.

[46]Puterman ML, 1994. Markov Decision Processes: Discrete Stochastic Dynamic Programming. John Wiley & Sons, Hoboken, USA.

[47]Rakhlin A, Sridharan K, 2013. Optimization, learning, and games with predictable sequences. Proc 26th Int Conf on Neural Information Processing Systems, p.3066-3074.

[48]Shao K, Zhu YH, Zhao DB, 2019. StarCraft micromanagement with reinforcement learning and curriculum transfer learning. IEEE Trans Emerg Top Comput Intell, 3(1):73-84.

[49]Silver D, Huang A, Maddison CJ, et al., 2016. Mastering the game of Go with deep neural networks and tree search. Nature, 529(7587):484-489.

[50]Silver D, Schrittwieser J, Simonyan K, et al., 2017. Mastering the game of Go without human knowledge. Nature, 550(7676):354-359.

[51]Singh A, Jain T, Sukhbaatar S, 2018. Learning when to communicate at scale in multiagent cooperative and competitive tasks. https://arxiv.org/abs/1812.09755

[52]Spielberg SPK, Gopaluni RB, Loewen PD, 2017. Deep reinforcement learning approaches for process control. Proc 6th Int Symp on Advanced Control of Industrial Processes, p.201-206.

[53]Synnaeve G, Nardelli N, Auvolat A, et al., 2016. TorchCraft: a library for machine learning research on real-time strategy games. https://arxiv.org/abs/1611.00625

[54]Tao F, Zhang H, Liu A, et al., 2019. Digital Twin in industry: state-of-the-art. IEEE Trans Ind Inform, 15(4):2405-2415.

[55]Tessler C, Givony S, Zahavy T, et al., 2017. A deep hierarchical approach to lifelong learning in minecraft. Proc 31st AAAI Conf on Artificial Intelligence, p.1553-1561.

[56]Todorov E, Erez T, Tassa Y, 2012. MuJoCo: a physics engine for model-based control. Proc IEEE/RSJ Int Conf on Intelligent Robots and Systems, p.5026-5033.

[57]Tso KS, Tharp GK, Zhang W, et al., 1999. A multi-agent operator interface for unmanned aerial vehicles. Proc Gateway to the New Millennium. Proc 18th Digital Avionics Systems Conf, Article 6.A.4.

[58]Vinyals O, Babuschkin I, Czarnecki WM, et al., 2019. Grandmaster level in StarCraft II using multi-agent reinforcement learning. Nature, 575(7782):350-354.

[59]Wang RD, He X, Yu RS, et al., 2020. Learning efficient multi-agent communication: an information bottleneck approach. Proc 37th Int Conf on Machine Learning, p.9908-9918.

[60]Wang Y, Cheng ZS, Xiao M, 2020. UAVs' formation keeping control based on multi-agent system consensus. IEEE Access, 8:49000-49012.

[61]Wang YN, Xu T, Niu X, et al., 2022. STMARL: a spatio-temporal multi-agent reinforcement learning approach for cooperative traffic light control. IEEE Trans Mob Comput, 21(6):2228-2242.

[62]Zhang KQ, Yang RZ, Başar T, 2021. Multi-agent reinforcement learning: a selective overview of theories and algorithms. In: Vamvoudakis KG, Wan Y, Lewis FL, et al. (Eds.), Derya Cansever Handbook of Reinforcement Learning and Control. Springer, Cham, p.321-384.

[63]Zhang Y, Yang Q, 2018. An overview of multi-task learning. Nat Sci Rev, 5(1):30-43.

[64]Zhou HY, Zhang HF, Zhou YS, et al., 2018. Botzone: an online multi-agent competitive platform for AI education. Proc 23rd Annual ACM Conf on Innovation and Technology in Computer Science Education, p.33-38.

[65]Zhuang FZ, Qi ZY, Duan KY, et al., 2021. A comprehensive survey on transfer learning. Proc IEEE, 109(1):43-76.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2022 Journal of Zhejiang University-SCIENCE