Full Text:   <245>

Summary:  <59>

Suppl. Mater.: 

CLC number: TP13

On-line Access: 2024-11-08

Received: 2024-05-23

Revision Accepted: 2024-11-08

Crosschecked: 2024-07-30

Cited: 0

Clicked: 473

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Hangli REN

https://orcid.org/0000-0002-1809-7512

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2024 Vol.25 No.10 P.1378-1389

http://doi.org/10.1631/FITEE.2400427


Event-triggered finite-time guaranteed cost control of asynchronous switched systems under the round-robin protocol via an AED-ADT method


Author(s):  Hangli REN, Qingxi FAN, Linlin HOU

Affiliation(s):  School of Electric Information Engineering, Zhengzhou University of Light Industry, Zhengzhou 450000, China; more

Corresponding email(s):   renhangli2013@163.com, fqingxi520@163.com, houtingting8706@126.com

Key Words:  Switched systems, Event-triggered scheme, Round-robin protocol, Asynchronous switching, Admissible edge-dependent average dwell time (AED-ADT), Guaranteed cost control


Hangli REN, Qingxi FAN, Linlin HOU. Event-triggered finite-time guaranteed cost control of asynchronous switched systems under the round-robin protocol via an AED-ADT method[J]. Frontiers of Information Technology & Electronic Engineering, 2024, 25(10): 1378-1389.

@article{title="Event-triggered finite-time guaranteed cost control of asynchronous switched systems under the round-robin protocol via an AED-ADT method",
author="Hangli REN, Qingxi FAN, Linlin HOU",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="25",
number="10",
pages="1378-1389",
year="2024",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2400427"
}

%0 Journal Article
%T Event-triggered finite-time guaranteed cost control of asynchronous switched systems under the round-robin protocol via an AED-ADT method
%A Hangli REN
%A Qingxi FAN
%A Linlin HOU
%J Frontiers of Information Technology & Electronic Engineering
%V 25
%N 10
%P 1378-1389
%@ 2095-9184
%D 2024
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2400427

TY - JOUR
T1 - Event-triggered finite-time guaranteed cost control of asynchronous switched systems under the round-robin protocol via an AED-ADT method
A1 - Hangli REN
A1 - Qingxi FAN
A1 - Linlin HOU
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 25
IS - 10
SP - 1378
EP - 1389
%@ 2095-9184
Y1 - 2024
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2400427


Abstract: 
This paper focuses on addressing the problems of finite-time boundedness and guaranteed cost control in switched systems under asynchronous switching. To reduce redundant information transmission and alleviate data congestion of sensor nodes, two schemes are proposed: the event-triggered scheme (ETS) and the round-robin protocol (RRP). These schemes are designed to ensure that the system exhibits good dynamic characteristics while reducing communication resources. In the field of finite-time control, a switching signal is designed using the admissible edge-dependent average dwell time (AED-ADT) method. This method involves a slow AED-ADT switching and a fast AED-ADT switching, which are respectively suitable for finite-time stable and finite-time unstable situations of the controlled system within the asynchronous switching interval. By constructing a double-mode dependent Lyapunov function, the finite-time bounded criterion and the controller gain of the switched systems are obtained. Finally, the validity of the proposed results is showcased by implementing a buck-boost voltage circuit model.

基于AED-ADT方法的循环协议下异步切换系统事件触发有限时间保性能控制

任航丽1,范庆锡1,侯琳琳2
1郑州轻工业大学电气信息工程学院,中国郑州市,450000
2曲阜师范大学信息科学与工程学院,中国日照市,276826
摘要:本文研究了异步切换系统的有限时间界限和保性能控制问题。为减少冗余信息传输和缓解传感器节点的数据拥塞,提出事件触发方案(ETS)和循环协议(RRP),旨在确保系统表现良好的动态特性的同时减少通信资源。在有限时间控制领域,采用允许边依赖平均停留时间(AED-ADT)方法设计切换信号。该方法涉及慢速AED-ADT切换和快速AED-ADT切换,分别适用于被控系统在异步切换间隔内的有限时间稳定和有限时间不稳定情况。通过构造双模态依赖的李雅普诺夫函数,得到切换系统的有限时间有界准则和控制器增益。最后,通过一个升降压电路模型验证了所提结果的有效性。

关键词:切换系统;事件触发方案;循环协议;异步切换;允许边依赖平均停留时间(AED-ADT);保性能控制

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Amini A, Asif A, Mohammadi A, et al., 2021. Sampled-data dynamic event-triggering control for networked systems subject to DoS attacks. IEEE Trans Netw Sci Eng, 8(3):1978-1990.

[2]Branicky MS, 1998. Multiple Lyapunov functions and other analysis tools for switched and hybrid systems. IEEE Trans Automat Contr, 43(4):475-482.

[3]Dorf R, Farren M, Phillips C, 1962. Adaptive sampling frequency for sampled-data control systems. IRE Trans Automat Contr, 7(1):38-47.

[4]Du SL, Dong JT, Li X, et al., 2022. Stability and stabilization for switched positive systems under a weighted MDADT method. J Franklin Inst, 359(8):3656-3670.

[5]Gao LJ, Cao ZB, Zhang M, et al., 2020. Input-to-state stability for hybrid delayed systems with admissible edge-dependent switching signals. J Franklin Inst, 357(13):8823-8850.

[6]Hu J, Wang ZD, Chen DY, et al., 2016. Estimation, filtering and fusion for networked systems with network-induced phenomena: new progress and prospects. Inform Fusion, 31:65-75.

[7]Huang J, Ma X, Che HC, et al., 2020. Further result on interval observer design for discrete-time switched systems and application to circuit systems. IEEE Trans Circ Syst II Exp Briefs, 67(11):2542-2546.

[8]Karamanakos P, Nahalparvari M, Geyer T, 2021. Fixed switching frequency direct model predictive control with continuous and discontinuous modulation for grid-tied converters with LCL filters. IEEE Trans Contr Syst Technol, 29(4):1503-1518.

[9]Li DH, Liang JL, Wang F, 2020. Observer-based output feedback H control of two-dimensional systems with periodic scheduling protocol and redundant channels. IET Contr Theory Appl, 14(20):3713-3722.

[10]Liu K, Fridman E, Johansson KH, 2015. Networked control with stochastic scheduling. IEEE Trans Automat Contr, 60(11):3071-3076.

[11]Liu SL, Niu B, Zong GD, et al., 2022. Adaptive fixed-time hierarchical sliding mode control for switched under-actuated systems with dead-zone constraints via event-triggered strategy. Appl Math Comput, 435:127441.

[12]Mao JY, Sun Y, Yi X, et al., 2021. Recursive filtering of networked nonlinear systems: a survey. Int J Syst Sci, 52(6):1110-1128.

[13]Merlin GB, Moreira LG, da Silva JMJr, 2021. Periodic event-triggered control for linear systems in the presence of cone-bounded nonlinear inputs: a discrete-time approach. J Contr Autom Electr Syst, 32(1):42-56.

[14]Murugesan S, Liu YC, 2019. Resilient memory event-triggered finite-time bounded for networked control systems with multiple cyber-attacks. American Control Conf, p.2713-2719.

[15]Murugesan S, Liu YC, 2022. Finite-time resilient control for networked control systems with multiple cyber-attacks: memory/adaptive event-triggered scheme. Int J Adapt Contr Signal Process, 36(4):901-925.

[16]Qi YW, Zeng PY, Bao W, 2018. Event-triggered and self-triggered H control of uncertain switched linear systems. IEEE Trans Syst Man Cybern Syst, 50(4):1442-1454.

[17]Qi YW, Liu YH, Fu J, et al., 2019. Event-triggered L control for network-based switched linear systems with transmission delay. Syst Contr Lett, 134:104533.

[18]Shang H, Zong GD, Shi KB, 2022. Neural-network-based distributed security filtering for networked switched systems. Int J Robust Nonl Contr, 32(5):2791-2804.

[19]Sun YR, Sun YG, Yang CZ, 2021. Finite-time control of networked control systems with time delay and packet dropout. J Contr Sci Eng, 2021(1):3093865.

[20]Wakaiki M, Sano H, 2019. Stability analysis of infinite-dimensional event-triggered and self-triggered control systems with Lipschitz perturbations. https://arxiv.org/abs/1911.12916

[21]Wan XB, Wang ZD, Wu M, et al., 2019. H state estimation for discrete-time nonlinear singularly perturbed complex networks under the round-robin protocol. IEEE Trans Neur Netw Learn Syst, 30(2):415-426.

[22]Wang D, Wang ZD, Shen B, et al., 2019. H finite-horizon filtering for complex networks with state saturations: the weighted try-once-discard protocol. Int J Robust Nonl Contr, 29(7):2096-2111.

[23]Wang WJ, Xu D, Zhou JP, et al., 2023. Cost-guaranteed exponential stabilization of Lurie systems via switched event-triggered control. Discret Contin Dyn Syst-Ser B, 28(4):2828-2845.

[24]Wang YD, Zong GD, Yang D, et al., 2022. Finite-time adaptive tracking control for a class of nonstrict feedback nonlinear systems with full state constraints. Int J Robust Nonl Contr, 32(5):2551-2569.

[25]Weiss L, Infante EF, 1965. On the stability of systems defined over a finite time interval. Proc Natl Acad Sci USA, 54(1):44-48.

[26]Wen GH, Wan Y, Cao JD, et al., 2016. Master–slave synchronization of heterogeneous systems under scheduling communication. IEEE Trans Syst Man Cybern Syst, 48(3):473-484.

[27]Xiang WM, Johnson TT, 2017. Event-triggered control for continuous-time switched linear systems. IET Contr Theory Appl, 11(11):1694-1703.

[28]Xie HZ, Zong GD, Bu W, et al., 2022. Input-to-state practical stability of switched affine systems with time-varying delay: an event-triggered mechanism. Int J Syst Sci, 53(9):1983-1994.

[29]Xu N, Liu X, Li YL, et al., 2024. Dynamic event-triggered control for a class of uncertain strict-feedback systems via an improved adaptive neural networks backstepping approach. IEEE Trans Autom Sci Eng, early access.

[30]Yang JQ, Zhao XD, Bu XH, et al., 2018. Stabilization of switched linear systems via admissible edge-dependent switching signals. Nonl Anal Hybrid Syst, 29:100-109.

[31]Yang L, Guan CX, Fei ZY, 2019. Finite-time asynchronous filtering for switched linear systems with an event-triggered mechanism. J Franklin Inst, 356(10):5503-5520.

[32]Zou L, Wang ZD, Gao HJ, et al., 2017. Finite-horizon H consensus control of time-varying multiagent systems with stochastic communication protocol. IEEE Trans Cybern, 47(8):1830-1840.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE