Full Text:   <416>

Summary:  <90>

CLC number: TN929.5

On-line Access: 2025-03-07

Received: 2024-05-31

Revision Accepted: 2024-10-04

Crosschecked: 2025-03-07

Cited: 0

Clicked: 667

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Jianhua ZHANG

https://orcid.org/0000-0003-0484-6188

Jialin WANG

https://orcid.org/0000-0001-5985-9061

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2025 Vol.26 No.2 P.260-277

http://doi.org/10.1631/FITEE.2400464


Electromagnetic wave property inspired radio environment knowledge construction and artificial intelligence based verification for 6G digital twin channel


Author(s):  Jialin WANG, Jianhua ZHANG, Yutong SUN, Yuxiang ZHANG, Tao JIANG, Liang XIA

Affiliation(s):  State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China; more

Corresponding email(s):   wangjialinbupt@bupt.edu.cn, jhzhang@bupt.edu.cn

Key Words:  Digital twin channel, Radio environment knowledge (REK) pool, Wireless channel, Environmental information, Interpretable REK construction, Artificial intelligence based knowledge verification


Jialin WANG, Jianhua ZHANG, Yutong SUN, Yuxiang ZHANG, Tao JIANG, Liang XIA. Electromagnetic wave property inspired radio environment knowledge construction and artificial intelligence based verification for 6G digital twin channel[J]. Frontiers of Information Technology & Electronic Engineering, 2025, 26(2): 260-277.

@article{title="Electromagnetic wave property inspired radio environment knowledge construction and artificial intelligence based verification for 6G digital twin channel",
author="Jialin WANG, Jianhua ZHANG, Yutong SUN, Yuxiang ZHANG, Tao JIANG, Liang XIA",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="26",
number="2",
pages="260-277",
year="2025",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2400464"
}

%0 Journal Article
%T Electromagnetic wave property inspired radio environment knowledge construction and artificial intelligence based verification for 6G digital twin channel
%A Jialin WANG
%A Jianhua ZHANG
%A Yutong SUN
%A Yuxiang ZHANG
%A Tao JIANG
%A Liang XIA
%J Frontiers of Information Technology & Electronic Engineering
%V 26
%N 2
%P 260-277
%@ 2095-9184
%D 2025
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2400464

TY - JOUR
T1 - Electromagnetic wave property inspired radio environment knowledge construction and artificial intelligence based verification for 6G digital twin channel
A1 - Jialin WANG
A1 - Jianhua ZHANG
A1 - Yutong SUN
A1 - Yuxiang ZHANG
A1 - Tao JIANG
A1 - Liang XIA
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 26
IS - 2
SP - 260
EP - 277
%@ 2095-9184
Y1 - 2025
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2400464


Abstract: 
As the underlying foundation of a digital twin network (DTN), digital twin channel (DTC) can accurately depict the electromagnetic wave propagation in the air interface to support the DTN-based 6G wireless network. Since electromagnetic wave propagation is affected by the environment, constructing the relationship between the environment and radio wave propagation is the key to implementing DTC. In the existing methods, the environmental information inputted into the neural network has many dimensions, and the correlation between the environment and the channel is unclear, resulting in a highly complex relationship construction process. To solve this issue, we propose a unified construction method of radio environment knowledge (REK) inspired by the electromagnetic wave property to quantify the propagation contribution based on easily obtainable location information. An effective scatterer determination scheme based on random geometry is proposed which reduces redundancy by 90%, 87%, and 81% in scenarios with complete openness, impending blockage, and complete blockage, respectively. We also conduct a path loss prediction task based on a lightweight convolutional neural network (CNN) employing a simple two-layer convolutional structure to validate REK’s effectiveness. The results show that only 4 ms of testing time is needed with a prediction error of 0.3, effectively reducing the network complexity.

电磁波特性启发的无线环境知识构建与基于人工智能的验证用于6G数字孪生信道

王嘉琳1,张建华1,孙语瞳1,张宇翔1,姜涛2,夏亮2
1北京邮电大学网络与交换技术国家重点实验室,中国北京市,100876
2中国移动研究院,中国北京市,100053
摘要:数字孪生信道作为数字孪生网络的底层基础,能够准确描述空口传输中的电磁波传播,从而支持基于数字孪生网络的6G无线网络。电磁波传播受环境影响,因此建立环境与电波传播之间的关系是实现数字孪生信道的关键。在现有方法中,输入到神经网络的环境信息是多维的,环境与信道之间的关联关系不明确,导致关系构建过程高度复杂。为解决这一问题,本文提出一种基于电磁波特性启发的通用的无线环境知识(REK)构建方法,以利用容易获取的位置信息量化电磁波传播贡献。提出一种有效的基于随机几何的散射体确定方法,在完全空旷、即将遮挡和完全遮挡的情况下,分别减少90%、87%和81%的环境信息冗余度。此外,基于一个采用简单的两层卷积结构的轻量级卷积神经网络进行路径损耗预测,以验证REK的有效性。结果表明,在预测误差为0.3时,仅需4 ms测试时间,有效降低了网络复杂度。

关键词:数字孪生信道;无线环境知识库;无线信道;环境信息;可解释的无线环境知识构建;基于人工智能的知识验证

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Bai TY, Vaze R, Heath RW, 2014. Analysis of blockage effects on urban cellular networks. IEEE Trans Wirel Commun, 13(9):5070-5083.

[2]Bor-Yaliniz I, Szyszkowicz SS, Yanikomeroglu H, 2018. Environment-aware drone-base-station placements in modern metropolitans. IEEE Wirel Commun Lett, 7(3):372-375.

[3]Cheng X, Huang ZW, Bai L, et al., 2023. M3SC: a generic dataset for mixed multi-modal (MMM) sensing and communication integration. China Commun, 20(11):13-29.

[4]Chowdhury MZ, Shahjalal M, Ahmed S, et al., 2020. 6G wireless communication systems: applications, requirements, technologies, challenges, and research directions. IEEE Open J Commun Soc, 1:957-975.

[5]Cui Y, Li QQ, Yang BS, et al., 2019. Automatic 3-D reconstruction of indoor environment with mobile laser scanning point clouds. IEEE J Sel Top Appl Earth Obs Remote Sens, 12(8):3117-3130.

[6]Giordani M, Polese M, Mezzavilla M, et al., 2020. Toward 6G networks: use cases and technologies. IEEE Commun Mag, 58(3):55-61.

[7]Han DR, Ye Q, Peng HX, et al., 2023. Two-timescale learning-based task offloading for remote IoT in integrated satellite-terrestrial networks. IEEE Int Things J, 10(12):10131-10145.

[8]Hayashi T, Ichige K, 2023. A deep-learning method for path loss prediction using geospatial information and path profiles. IEEE Trans Antenn Propag, 71(9):7523-7537.

[9]Hou WH, Sun JL, Gui G, et al., 2021. Federated learning for DL-CSI prediction in FDD massive MIMO systems. IEEE Wirel Commun Lett, 10(8):1810-1814.

[10]ITU, 2022. Future Technology Trends of Terrestrial International Mobile Telecommunications Systems Towards 2030 and Beyond. Report ITU-R M.2516-0, ITU, Geneva.

[11]ITU, 2023. Framework and Overall Objectives of the Future Development of IMT for 2030 and Beyond. Recommendation ITU-R M.2160-0, ITU, Geneva.

[12]Järveläinen J, Nguyen SLH, Haneda K, et al., 2016. Evaluation of millimeter-wave line-of-sight probability with point cloud data. IEEE Wirel Commun Lett, 5(3):228-231.

[13]Ji XS, Wu JX, Jin L, et al., 2022. Discussion on a new paradigm of endogenous security towards 6G networks. Front Inform Technol Electron Eng, 23(10):1421-1450.

[14]Katz M, 2002. Introduction to Geometrical Optics. World Scientific, River Edge, USA.

[15]Khan LU, Saad W, Niyato D, et al., 2022a. Digital-twin-enabled 6G: vision, architectural trends, and future directions. IEEE Commun Mag, 60(1):74-80.

[16]Khan LU, Han Z, Saad W, et al., 2022b. Digital twin of wireless systems: overview, taxonomy, challenges, and opportunities. IEEE Commun Surv Tutor, 24(4):2230-2254.

[17]Levie R, Yapar Ç, Kutyniok G, et al., 2021. RadioUNet: fast radio map estimation with convolutional neural networks. IEEE Trans Wirel Commun, 20(6):4001-4015.

[18]Li ZW, Liu F, Yang WJ, et al., 2022. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE Trans Neur Netw Learn Syst, 33(12):6999-7019.

[19]Lin XQ, Kundu L, Dick C, et al., 2023. 6G digital twin networks: from theory to practice. IEEE Commun Mag, 61(11):72-78.

[20]Liu F, Cui YH, Masouros C, et al., 2022. Integrated sensing and communications: toward dual-functional wireless networks for 6G and beyond. IEEE J Sel Areas Commun, 40(6):1728-1767.

[21]Liu GY, Huang YH, Li N, et al., 2020. Vision, requirements and network architecture of 6G mobile network beyond 2030. China Commun, 17(9):92-104.

[22]Liu GY, Deng J, Zheng QB, 2023. 6G autonomous mobile network enabled by digital twin network. ZTE Technol J, 29(3):2-7 (in Chinese).

[23]Masaracchia A, Sharma V, Canberk B, et al., 2022. Digital twin for 6G: taxonomy, research challenges, and the road ahead. IEEE Open J Commun Soc, 3:2137-2150.

[24]Miao YH, Zhang YX, Zhang JH, et al., 2023. Demo abstract: predictive radio environment for digital twin communication platform via enhanced sensing. Proc IEEE Conf on Computer Communications Workshops, p.1-2.

[25]Nguyen MT, Song J, Kwon S, et al., 2023. Power allocation for adaptive-connectivity wireless networks under imperfect CSI. IEEE Trans Commun, 71(7):4328-4343.

[26]Pathak PH, Kim Y, 2011. A uniform geometrical theory of diffraction (UTD) for curved edges illuminated by electromagnetic beams. Proc 30th URSI General Assembly and Scientific Symp, p.1-4.

[27]Poullis C, 2020. Large-scale urban reconstruction with tensor clustering and global boundary refinement. IEEE Trans Patt Anal Mach Intell, 42(5):1132-1145.

[28]Rajoria S, Mishra K, 2022. A brief survey on 6G communications. Wirel Netw, 28(7):2901-2911.

[29]Rappaport TS, Xing YC, Kanhere O, et al., 2019. Wireless communications and applications above 100 GHz: opportunities and challenges for 6G and beyond. IEEE Access, 7:78729-78757.

[30]Saad W, Bennis M, Chen MZ, 2020. A vision of 6G wireless systems: applications, trends, technologies, and open research problems. IEEE Netw, 34(3):134-142.

[31]Saunders SR, Aragón-Zavala AA, 2007. Antennas and Propagation for Wireless Communication Systems. John Wiley & Sons, Chichester, UK.

[32]Shen ZB, Yu L, Zhang YX, et al., 2023. DataAI-6G: a system parameters configurable channel dataset for AI-6G research. Proc IEEE Globecom Workshops, p.1910-1915.

[33]Sun YT, Zhang JH, Zhang YX, et al., 2022a. Environment features-based model for path loss prediction. IEEE Wirel Commun Lett, 11(9):2010-2014.

[34]Sun YT, Zhang JH, Zhang YX, et al., 2022b. Environment information-based channel prediction method assisted by graph neural network. China Commun, 19(11):1-15.

[35]Wang H, Zhang JH, Nie GF, et al., 2024. Digital twin channel for 6G: concepts, architectures and potential applications. https://arxiv.org/abs/2403.12467

[36]Wang J, Zhang Y, Zhang J, et al., 2023. Towards 6G digital twin channel using radio environment knowledge pool. https://arxiv.org/abs/2312.10287

[37]Wang XY, Wang XY, Mao SW, 2020. Deep convolutional neural networks for indoor localization with CSI images. IEEE Trans Netw Sci Eng, 7(1):316-327.

[38]Wang ZY, Sun YH, Yuan S, 2022. Intelligent radio access networks: architectures, key techniques, and experimental platforms. Front Inform Technol Electron Eng, 23(1):5-18.

[39]Wu D, Zeng Y, Jin S, et al., 2024. Environment-aware hybrid beamforming by leveraging channel knowledge map. IEEE Trans Wirel Commun, 23(5):4990-5005.

[40]Wu YW, Zhang K, Zhang Y, 2021. Digital twin networks: a survey. IEEE Int Things J, 8(18):13789-13804.

[41]Yang WM, Zhang XC, Tian YP, et al., 2019. Deep learning for single image super-resolution: a brief review. IEEE Trans Multim, 21(12):3106-3121.

[42]Yang YW, Gao FF, Tao XM, et al., 2023. Environment semantics aided wireless communications: a case study of mmWave beam prediction and blockage prediction. IEEE J Sel Areas Commun, 41(7):2025-2040.

[43]Zeng Y, Xu XL, 2021. Toward environment-aware 6G communications via channel knowledge map. IEEE Wirel Commun, 28(3):84-91.

[44]Zeng Y, Chen JT, Xu J, et al., 2024. A tutorial on environment-aware communications via channel knowledge map for 6G. IEEE Commun Surv Tut, 26(3):1478-1519.

[45]Zhang JH, 2016. The interdisciplinary research of big data and wireless channel: a cluster-nuclei based channel model. China Commun, 13(2):14-26.

[46]Zhang JH, Tang P, Yu L, et al., 2020. Channel measurements and models for 6G: current status and future outlook. Front Inform Technol Electron Eng, 21(1):39-61.

[47]Zhang JH, Lin JX, Tang P, et al., 2023. Channel measurement, modeling, and simulation for 6G: a survey and tutorial. https://arxiv.org/abs/2305.16616

[48]Zhang P, Zhang JH, Qi Q, et al., 2020. Ubiquitous-X: constructing the future 6G networks. Sci Sin Inform, 50(6):913-930 (in Chinese).

[49]Zhang P, Li LH, Niu K, et al., 2021. An intelligent wireless transmission toward 6G. Intell Converg Netw, 2(3):244-257.

[50]Zhang P, Xu WJ, Gao H, et al., 2022. Toward wisdom-evolutionary and primitive-concise 6G: a new paradigm of semantic communication networks. Engineering, 8:60-73.

[51]Zhang P, Xu XD, Dong C, et al., 2023. Model division multiple access for semantic communications. Front Inform Technol Electron Eng, 24(6):801-812.

[52]Zhang Z, Zhang JH, Zhang YX, et al., 2024. Deep reinforcement learning based dynamic beam selection in dual-band communication systems. IEEE Trans Wirel Commun, 23(4):2591-2606.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE