CLC number: TN929
On-line Access: 2025-05-06
Received: 2024-05-31
Revision Accepted: 2024-12-01
Crosschecked: 2025-05-06
Cited: 0
Clicked: 281
Xuebin LAI, Yan GUO, Ming HE, Hao YUAN, Wei LI, Xiaonan CUI. A UAV-enabled mobile edge computing paradigm for dependent tasks based on a computing power pool[J]. Frontiers of Information Technology & Electronic Engineering, 2025, 26(4): 623-638.
@article{title="A UAV-enabled mobile edge computing paradigm for dependent tasks based on a computing power pool",
author="Xuebin LAI, Yan GUO, Ming HE, Hao YUAN, Wei LI, Xiaonan CUI",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="26",
number="4",
pages="623-638",
year="2025",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2400465"
}
%0 Journal Article
%T A UAV-enabled mobile edge computing paradigm for dependent tasks based on a computing power pool
%A Xuebin LAI
%A Yan GUO
%A Ming HE
%A Hao YUAN
%A Wei LI
%A Xiaonan CUI
%J Frontiers of Information Technology & Electronic Engineering
%V 26
%N 4
%P 623-638
%@ 2095-9184
%D 2025
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2400465
TY - JOUR
T1 - A UAV-enabled mobile edge computing paradigm for dependent tasks based on a computing power pool
A1 - Xuebin LAI
A1 - Yan GUO
A1 - Ming HE
A1 - Hao YUAN
A1 - Wei LI
A1 - Xiaonan CUI
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 26
IS - 4
SP - 623
EP - 638
%@ 2095-9184
Y1 - 2025
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2400465
Abstract: With the evolution of 5th generation (5G) and 6th generation (6G) wireless communication technologies, various Internet of Things (IoT) devices and artificial intelligence applications are proliferating, putting enormous pressure on existing computing power networks. unmanned aerial vehicle (UAV)-enabled mobile edge computing (U-MEC) shows potential to alleviate this pressure and has been recognized as a new paradigm for responding to data explosion. Nevertheless, the conflict between computing demands and resource-constrained UAVs poses a great challenge. Recently, researchers have proposed resource management solutions in U-MEC for computing tasks with dependency. However, the repeatability among the tasks was ignored. In this paper, considering repeatability and dependency, we propose a U-MEC paradigm based on a computing power pool for processing computationally intensive tasks, in which UAVs can share information and computing resources. To ensure the effectiveness of computing power pool construction, the problem of balancing the energy consumption of UAVs is formulated through joint optimization of an offloading strategy, task scheduling, and resource allocation. To address this NP-hard problem, we adopt a two-stage alternate optimization algorithm based on successive convex approximation (SCA) and an improved genetic algorithm (GA). The simulation results show that the proposed scheme reduces time consumption by 18.41% and energy consumption by 21.68% on average, which can improve the working efficiency of UAVs.
[1]Abrar M, Ajmal U, Almohaimeed ZM, et al., 2021. Energy efficient UAV-enabled mobile edge computing for IoT devices: a review. IEEE Access, 9:127779-127798.
[2]Ahmed M, Seraj R, Islam SMS, 2020. The k-means algorithm: a comprehensive survey and performance evaluation. Electronics, 9(8):1295.
[3]Alliance of Industrial Internet (AII), 2023. Edge Native Technical White Paper 2.0. Technical Report (in Chinese).
[4]Bahmani B, Moseley B, Vattani A, et al., 2012. Scalable K-means++. Proc VLDB Endowm, 5(7):622-633.
[5]Bai ZY, Lin YF, Cao Y, et al., 2022. Delay-aware cooperative task offloading for multi-UAV enabled edge-cloud computing. IEEE Trans Mob Comput, 23(2):1034-1049.
[6]China Center for Information Industry Development (CCID), 2020. 6G Concept and Vision White Paper. Technical Report, p.1-32(in Chinese).
[7]Dai MH, Huang N, Wu Y, et al., 2023. Latency minimization oriented hybrid offshore and aerial-based multi-access computation offloading for marine communication networks. IEEE Trans Commun, 71(11):6482-6498.
[8]Fu S, Guo XH, Fang F, et al., 2023. Towards energy-efficient data collection by unmanned aerial vehicle base station with NOMA for emergency communications in IoT. IEEE Trans Veh Technol, 72(1):1211-1223.
[9]Guo HZ, Wang YT, Liu JJ, et al., 2024. Multi-UAV cooperative task offloading and resource allocation in 5G advanced and beyond. IEEE Trans Wirel Commun, 23(1):347-359.
[10]Hämäläinen J, Kärkkäinen T, Rossi T, 2020. Improving scalable K-means++. Algorithms, 14(1):6.
[11]He YJ, Gan YH, Cui HX, et al., 2023. Fairness-based 3D multi-UAV trajectory optimization in multi-UAV-assisted MEC system. IEEE Int Things J, 10(13):11383-11395.
[12]Hu QY, Cai YL, Yu GD, et al., 2019. Joint offloading and trajectory design for UAV-enabled mobile edge computing systems. IEEE Int Things J, 6(2):1879-1892.
[13]Hu XY, Wong KK, Zhang YY, 2020. Wireless-powered edge computing with cooperative UAV: task, time scheduling, and trajectory design. IEEE Trans Wirel Commun, 19(12):8083-8098.
[14]Hu ZZ, Zeng FZ, Xiao Z, et al., 2021. Computation efficiency maximization and QoE-provisioning in UAV-enabled MEC communication systems. IEEE Trans Netw Sci Eng, 8(2):1630-1645.
[15]Huang XM, Peng CD, Wu Y, et al., 2023. Joint interdependent task scheduling and energy balancing for multi-UAV-enabled aerial edge computing: a multiobjective optimization approach. IEEE Int Things J, 10(23):20368-20382.
[16]Jang Y, Jeong S, Kang J, 2024. Energy-efficient vehicular edge computing with one-by-one access scheme. IEEE Wirel Commun Lett, 13(1):39-43.
[17]Jia RN, Zhao K, Wei XL, et al., 2023. Joint trajectory planning, service function deploying, and DAG task scheduling in UAV-empowered edge computing. Drones, 7(7):443.
[18]Kato N, Fadlullah ZM, Tang FX, et al., 2019. Optimizing space-air-ground integrated networks by artificial intelligence. IEEE Wirel Commun, 26(4):140-147.
[19]Khalid R, Shah Z, Naeem M, et al., 2024. Computational efficiency maximization for UAV-assisted MEC networks with energy harvesting in disaster scenarios. IEEE Int Things J, 11(5):9004-9018.
[20]Khuwaja AA, Chen YF, Zhao N, et al., 2018. A survey of channel modeling for UAV communications. IEEE Commun Surv Tutor, 20(4):2804-2821.
[21]Kim D, Jeong S, Kang J, 2024. Energy-efficient secure offloading system designed via UAV-mounted intelligent reflecting surface for resilience enhancement. IEEE Int Things J, 11(3):3768-3778.
[22]Li J, Pan Y, Xia YC, et al., 2024. Optimizing dag scheduling and deployment for IoT data analysis services in the multi-UAV mobile edge computing system. Wirel Netw, 30(7):6465-6479.
[23]Lin H, Zeadally S, Chen ZH, et al., 2020. A survey on computation offloading modeling for edge computing. J Netw Comput Appl, 169:102781.
[24]Liu CT, Guo Y, Li N, et al., 2022. AoI-minimal task assignment and trajectory optimization in multi-UAV-assisted IoT networks. IEEE Int Things J, 9(21):21777-21791.
[25]Liu CT, Guo Y, Li N, et al., 2023. Satisfaction-driven cooperative trajectory optimisation for multi-UAV-assisted mobile edge computing. Int J Ad Hoc Ubiq Comput, 43(1):29-40.
[26]Liu SM, Yu Y, Lian X, et al., 2023. Dependent task scheduling and offloading for minimizing deadline violation ratio in mobile edge computing networks. IEEE J Sel Areas Commun, 41(2):538-554.
[27]Luan QJ, Cui HY, Zhang LF, et al., 2022. A hierarchical hybrid subtask scheduling algorithm in UAV-assisted MEC emergency network. IEEE Int Things J, 9(14):12737-12753.
[28]Mei HB, Yang K, Liu Q, et al., 2020. Joint trajectory-resource optimization in UAV-enabled edge-cloud system with virtualized mobile clone. IEEE Int Things J, 7(7):5906-5921.
[29]Michailidis ET, Maliatsos K, Skoutas DN, et al., 2022. Secure UAV-aided mobile edge computing for IoT: a review. IEEE Access, 10:86353-86383.
[30]Nasir AA, 2021. Latency optimization of UAV-enabled MEC system for virtual reality applications under Rician fading channels. IEEE Wirel Commun Lett, 10(8):1633-1637.
[31]Nguyen LX, Tun YK, Dang TN, et al., 2023. Dependency tasks offloading and communication resource allocation in collaborative UAV networks: a metaheuristic approach. IEEE Int Things J, 10(10):9062-9076.
[32]Ning ZL, Hu H, Wang XJ, et al., 2023. Mobile edge computing and machine learning in the Internet of unmanned aerial vehicles: a survey. ACM Comput Surv, 56(1):13.
[33]Pranoto H, Saputra PP, Sadekh M, et al., 2023. Augmented reality navigation application to promote tourism to local state attraction “Lawang Sewu.” Proc Comput Sci, 216:757-764.
[34]Qin XT, Song ZY, Hou TW, et al., 2023. Joint optimization of resource allocation, phase shift, and UAV trajectory for energy-efficient RIS-assisted UAV-enabled MEC systems. IEEE Trans Green Commun Netw, 7(4):1778-1792.
[35]Qin Z, Wang H, Wei ZH, et al., 2021. Task selection and scheduling in UAV-enabled MEC for reconnaissance with time-varying priorities. IEEE Int Things J, 8(24):17290-17307.
[36]Sahni Y, Cao JN, Yang L, et al., 2021. Multihop offloading of multiple DAG tasks in collaborative edge computing. IEEE Int Things J, 8(6):4893-4905.
[37]Samir M, Sharafeddine S, Assi CM, et al., 2020. UAV trajectory planning for data collection from time-constrained IoT devices. IEEE Trans Wirel Commun, 19(1):34-46.
[38]Scutari G, Facchinei F, Lampariello L, 2017. Parallel and distributed methods for constrained nonconvex optimization—part I: theory. IEEE Trans Signal Process, 65(8):1929-1944.
[39]Tian J, Wang D, Zhang HX, et al., 2023. Service satisfaction-oriented task offloading and UAV scheduling in UAV-enabled MEC networks. IEEE Trans Wirel Commun, 22(12):8949-8964.
[40]Wang LJ, Zhou Q, Shen Y, 2023. Computation efficiency maximization for UAV-assisted relaying and MEC networks in urban environment. IEEE Trans Green Commun Netw, 7(2):565-578.
[41]Wang ZQ, Rong HG, Jiang HB, et al., 2022. A load-balanced and energy-efficient navigation scheme for UAV-mounted mobile edge computing. IEEE Trans Netw Sci Eng, 9(5):3659-3674.
[42]Wu GX, Miao YM, Zhang Y, et al., 2020. Energy efficient for UAV-enabled mobile edge computing networks: intelligent task prediction and offloading. Comput Commun, 150:556-562.
[43]Xu B, Kuang ZF, Gao J, et al., 2023. Joint offloading decision and trajectory design for UAV-enabled edge computing with task dependency. IEEE Trans Wirel Commun, 22(8):5043-5055.
[44]Yan J, Bi SZ, Zhang YJ, et al., 2020a. Optimal task offloading and resource allocation in mobile-edge computing with inter-user task dependency. IEEE Trans Wirel Commun, 19(1):235-250.
[45]Yan J, Bi SZ, Zhang YJA, 2020b. Offloading and resource allocation with general task graph in mobile edge computing: a deep reinforcement learning approach. IEEE Trans Wirel Commun, 19(8):5404-5419.
[46]Yang XM, Luo H, Sun Y, et al., 2021. Coalitional game-based cooperative computation offloading in MEC for reusable tasks. IEEE Int Things J, 8(16):12968-12982.
[47]Yang ZY, Bi SZ, Zhang YJA, 2022. Online trajectory and resource optimization for stochastic UAV-enabled MEC systems. IEEE Trans Wirel Commun, 21(7):5629-5643.
[48]Yuan WY, Chang DN, Han T, 2023. A context-aware smart product-service system development approach and application case. Comput Ind Eng, 183:109468.
[49]Zhai ZY, Dai XH, Duo B, et al., 2022. Energy-efficient UAV-mounted RIS assisted mobile edge computing. IEEE Wirel Commun Lett, 11(12):2507-2511.
[50]Zhang L, Chakareski J, 2022. UAV-assisted edge computing and streaming for wireless virtual reality: analysis, algorithm design, and performance guarantees. IEEE Trans Veh Technol, 71(3):3267-3275.
[51]Zhang PY, Wang C, Jiang CX, et al., 2021. UAV-assisted multi-access edge computing: technologies and challenges. IEEE Int Things Mag, 4(4):12-17.
[52]Zhang XC, Zhang J, Xiong J, et al., 2020. Energy-efficient multi-UAV-enabled multiaccess edge computing incorporating NOMA. IEEE Int Things J, 7(6):5613-5627.
[53]Zhao TT, Li F, He LJ, 2024. Secure video offloading in multi-UAV-enabled MEC networks: a deep reinforcement learning approach. IEEE Int Things J, 11(2):2950-2963.
Open peer comments: Debate/Discuss/Question/Opinion
<1>