
CLC number: TP391
On-line Access: 2026-01-09
Received: 2024-12-14
Revision Accepted: 2025-08-19
Crosschecked: 2026-01-11
Cited: 0
Clicked: 931
Citations: Bibtex RefMan EndNote GB/T7714
https://orcid.org/0000-0002-6101-0574
Lilan HUANG, Hongze LENG, Junqiang SONG, Dongzi WANG, Wuxin WANG, Ruisheng HU, Hang CAO. DRL-EnVar: an adaptive hybrid ensemble–variational data assimilation method based on deep reinforcement learning[J]. Frontiers of Information Technology & Electronic Engineering, 2025, 26(12): 2583-2603.
@article{title="DRL-EnVar: an adaptive hybrid ensemble–variational data assimilation method based on deep reinforcement learning",
author="Lilan HUANG, Hongze LENG, Junqiang SONG, Dongzi WANG, Wuxin WANG, Ruisheng HU, Hang CAO",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="26",
number="12",
pages="2583-2603",
year="2025",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2401063"
}
%0 Journal Article
%T DRL-EnVar: an adaptive hybrid ensemble–variational data assimilation method based on deep reinforcement learning
%A Lilan HUANG
%A Hongze LENG
%A Junqiang SONG
%A Dongzi WANG
%A Wuxin WANG
%A Ruisheng HU
%A Hang CAO
%J Frontiers of Information Technology & Electronic Engineering
%V 26
%N 12
%P 2583-2603
%@ 2095-9184
%D 2025
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2401063
TY - JOUR
T1 - DRL-EnVar: an adaptive hybrid ensemble–variational data assimilation method based on deep reinforcement learning
A1 - Lilan HUANG
A1 - Hongze LENG
A1 - Junqiang SONG
A1 - Dongzi WANG
A1 - Wuxin WANG
A1 - Ruisheng HU
A1 - Hang CAO
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 26
IS - 12
SP - 2583
EP - 2603
%@ 2095-9184
Y1 - 2025
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2401063
Abstract: Accurate estimation of the background error covariance matrix denoted as
[1]Arulkumaran K, Deisenroth MP, Brundage M, et al., 2017. Deep reinforcement learning: a brief survey. IEEE Signal Process Mag, 34(6):26-38.
[2]Bannister RN, 2008a. A review of forecast error covariance statistics in atmospheric variational data assimilation. I: characteristics and measurements of forecast error covariances. Quart J Roy Meteor Soc, 134(637):1951-1970.
[3]Bannister RN, 2008b. A review of forecast error covariance statistics in atmospheric variational data assimilation. II: modelling the forecast error covariance statistics. Quart J Roy Meteor Soc, 134(637):1971-1996.
[4]Bannister RN, 2017. A review of operational methods of variational and ensemble-variational data assimilation. Quart J Roy Meteor Soc, 143(703):607-633.
[5]Bellman R, 1957. A Markovian decision process. J Math Mech, 6(5):679-684.
[6]Buehner M, Gauthier P, Liu Z, 2005. Evaluation of new estimates of background- and observation-error covariances for variational assimilation. Quart J Roy Meteor Soc, 131(613):3373-3383.
[7]Chen YD, Guo S, Meng DM, et al., 2020. The impact of optimal selected historical forecasting samples on hybrid ensemble-variational data assimilation. Atmos Res, 242:104980.
[8]Cho K, van Merriënboer B, Gulcehre C, et al., 2014. Learning phrase representations using RNN encoder–decoder for statistical machine translation. Proc Conf on Empirical Methods in Natural Language Processing, p.1724-1734.
[9]Cuomo S, Di Cola VS, Giampaolo F, et al., 2022. Scientific machine learning through physics-informed neural networks: where we are and what’s next. J Sci Comput, 92(3):88.
[10]Ding YH, Chan JCL, 2005. The East Asian summer monsoon: an overview. Meteor Atmos Phys, 89(1):117-142.
[11]Espeholt L, Soyer H, Munos R, et al., 2018. IMPALA: scalable distributed deep-RL with importance weighted actor-learner architectures. Proc 35th Int Conf on Machine Learning, p.1406-1415.
[12]Gao ZH, Shi XJ, Wang H, et al., 2022. Earthformer: exploring space-time Transformers for Earth system forecasting. Proc 36th Advances in Neural Information Processing Systems, p.25390-25403.
[13]Gaspari G, Cohn SE, 1999. Construction of correlation functions in two and three dimensions. Quart J Roy Meteor Soc, 125(554):723-757.
[14]Gasperoni NA, Wang XG, Wang YM, 2022. Using a cost-effective approach to increase background ensemble member size within the GSI-based EnVar system for improved radar analyses and forecasts of convective systems. Mon Wea Rev, 150(3):667-689.
[15]Gasperoni NA, Wang XG, Wang YM, 2023. Valid time shifting for an experimental RRFS convection-allowing EnVar data assimilation and forecast system: description and systematic evaluation in real time. Mon Wea Rev, 151(5):1229-1245.
[16]Glorot X, Bordes A, Bengio Y, 2011. Deep sparse rectifier neural networks. Proc 14th Int Conf on Artificial Intelligence and Statistics, p.315-323.
[17]Gregor K, Danihelka I, Graves A, et al., 2015. DRAW: a recurrent neural network for image generation. Proc 32nd Int Conf on Machine Learning, p.1462-1471.
[18]Hornik K, Stinchcombe M, White H, 1989. Multilayer feedforward networks are universal approximators. Neur Netw, 2(5):359-366.
[19]Houtekamer PL, Lefaivre L, Derome J, et al., 1996. A system simulation approach to ensemble prediction. Mon Wea Rev, 124(6):1225-1242.
[20]Huang B, Wang XG, 2018. On the use of cost-effective valid-time-shifting (VTS) method to increase ensemble size in the GFS hybrid 4DEnVar system. Mon Wea Rev, 146(9):2973-2998.
[21]Huang LL, Leng HZ, Song JQ, et al., 2025. An adaptive variance adjustment strategy for a static background error covariance matrix—part I: verification in the Lorenz-96 model. Appl Sci, 15(12):6399.
[22]James EP, Alexander CR, Dowell DC, et al., 2022. The high-resolution rapid refresh (HRRR): an hourly updating convection-allowing forecast model. Part II: forecast performance. Wea Forecast, 37(8):1397-1417.
[23]Johnson R, Zhang T, 2017. Deep pyramid convolutional neural networks for text categorization. Proc 55th Annual Meeting of the Association for Computational Linguistics, p.562-570.
[24]Kaelbling LP, Littman ML, Moore AW, 1996. Reinforcement learning: a survey. J Artif Intell Res, 4:237-285.
[25]Kalman RE, 1960. A new approach to linear filtering and prediction problems. J Basic Eng, 82(1):35-45.
[26]Ketkar N, Moolayil J, 2021. Convolutional neural networks. In: Ketkar N, Moolayil (Eds.), Deep Learning with Python: Learn Best Practices of Deep Learning Models with PyTorch. Apress, Berkeley, CA, USA.
[27]Kurosawa K, Poterjoy J, 2023. A statistical hypothesis testing strategy for adaptively blending particle filters and ensemble Kalman filters for data assimilation. Mon Wea Rev, 151(1):105-125.
[28]Lam R, Sanchez-Gonzalez A, Willson M, et al., 2023. Learning skillful medium-range global weather forecasting. Science, 382(6677):1416-1421.
[29]LeCun Y, Bengio Y, Hinton G, 2015. Deep learning. Nature, 521(7553):436-444.
[30]Leng HZ, Song JQ, Yin FK, et al., 2013. Notes and correspondence on ensemble-based three-dimensional variational filters. J Zhejiang Univ SCIENCE C, 14(8):634-641.
[31]Lorenc AC, 2017. Improving ensemble covariances in hybrid variational data assimilation without increasing ensemble size. Quart J Roy Meteor Soc, 143(703):1062-1072.
[32]Lorenz EN, Emanuel KA, 1998. Optimal sites for supplementary weather observations: simulation with a small model. J Atmos Sci, 55(3):399-414.
[33]Mnih V, Kavukcuoglu K, Silver D, et al., 2015. Human-level control through deep reinforcement learning. Nature, 518(7540):529-533.
[34]Parrish DF, Derber JC, 1992. The national meteorological center’s spectral statistical-interpolation analysis system. Mon Wea Rev, 120(8):1747-1763.
[35]Qi CR, Su H, Mo K, et al., 2017. PointNet: deep learning on point sets for 3D classification and segmentation. Proc IEEE Conf on Computer Vision and Pattern Recognition, p.77-85.
[36]Reichstein M, Camps-Valls G, Stevens B, et al., 2019. Deep learning and process understanding for data-driven Earth system science. Nature, 566(7743):195-204.
[37]Sainath TN, Vinyals O, Senior A, et al., 2015. Convolutional, long short-term memory, fully connected deep neural networks. IEEE Int Conf on Acoustics, Speech and Signal Processing, p.4580-4584.
[38]Sanz-Alonso D, Stuart A, Taeb A, 2023. Inverse problems and data assimilation. Cambridge University Press, New York, USA.
[39]Silver D, Schrittwieser J, Simonyan K, et al., 2017. Mastering the game of Go without human knowledge. Nature, 550(7676):354-359.
[40]Wang CC, Tsai CH, Jou BJD, et al., 2022. Time-lagged ensemble quantitative precipitation forecasts for three landfalling typhoons in the Philippines using the CReSS model, part II: verification using global precipitation measurement retrievals. Remote Sens, 14(20):5126.
[41]Wang YB, Min JZ, Chen YD, et al., 2017. Improving precipitation forecast with hybrid 3DVar and time-lagged ensembles in a heavy rainfall event. Atmos Res, 183:1-16.
[42]Yang Y, Wang XG, 2024. A comparison of 3DEnVar and 4DEnVar for convective-scale direct radar reflectivity data assimilation in the context of a filter and a smoother. Mon Wea Rev, 152(1):59-78.
[43]Yokota S, Banno T, Oigawa M, et al., 2024. JMA operational hourly hybrid 3DVar with singular vector-based mesoscale ensemble prediction system. J Meteor Soc Japan Ser II, 102(2):129-150.
Open peer comments: Debate/Discuss/Question/Opinion
<1>