Full Text:   <280>

Summary:  <140>

CLC number: TP391

On-line Access: 2026-01-09

Received: 2025-07-22

Revision Accepted: 2025-10-31

Crosschecked: 2026-01-11

Cited: 0

Clicked: 354

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Bin ZHOU

https://orcid.org/0009-0000-2770-5527

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2025 Vol.26 No.12 P.2455-2469

http://doi.org/10.1631/FITEE.2500522


Integrating the cat’s eye effect and deep learning for low-altitude target detection


Author(s):  Bin ZHOU, Weiming WANG, Ning YAN, Linlin ZHAO, Chuanzhen LI

Affiliation(s):  School of Electronics and Electrical Engineering, Zhengzhou University of Science and Technology, Zhengzhou 450064, China; more

Corresponding email(s):   whelmmail@126.com

Key Words:  Low-altitude detection, Optical path detection, Cat’, s eye effect, SKNet21, Local pyramid attention, Average precision


Bin ZHOU, Weiming WANG, Ning YAN, Linlin ZHAO, Chuanzhen LI. Integrating the cat’s eye effect and deep learning for low-altitude target detection[J]. Frontiers of Information Technology & Electronic Engineering, 2025, 26(12): 2455-2469.

@article{title="Integrating the cat’s eye effect and deep learning for low-altitude target detection",
author="Bin ZHOU, Weiming WANG, Ning YAN, Linlin ZHAO, Chuanzhen LI",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="26",
number="12",
pages="2455-2469",
year="2025",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2500522"
}

%0 Journal Article
%T Integrating the cat’s eye effect and deep learning for low-altitude target detection
%A Bin ZHOU
%A Weiming WANG
%A Ning YAN
%A Linlin ZHAO
%A Chuanzhen LI
%J Frontiers of Information Technology & Electronic Engineering
%V 26
%N 12
%P 2455-2469
%@ 2095-9184
%D 2025
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2500522

TY - JOUR
T1 - Integrating the cat’s eye effect and deep learning for low-altitude target detection
A1 - Bin ZHOU
A1 - Weiming WANG
A1 - Ning YAN
A1 - Linlin ZHAO
A1 - Chuanzhen LI
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 26
IS - 12
SP - 2455
EP - 2469
%@ 2095-9184
Y1 - 2025
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2500522


Abstract: 
This paper addresses the urgent need to detect low, slow, and small (LSS) unmanned aerial vehicles (UAVs) in complex and critical environments, proposing an active low-altitude target detection method based on the cat’;s eye effect. The detection system incorporates a control module, a laser emission component, a co-optical path panoramic scanning optical mechanism structure, an echo reception component, target detection, and visualization processing to achieve small target detection. The light source is emitted by a near-infrared laser, and the scanning optical path is realized using micro-electro-mechanical system (MEMS) mirrors and servo mechanisms. The echo reception signal is received by an avalanche photodiode (APD) and the target detection module, which captures the reflected signal and distance information. The detection software integrates the local pyramid attention (LPA) module and the field pyramid network (FPN) through the UAV micro lens identification algorithm. It eliminates false alarms by incorporating SKNet21 and uses the APD to collect echo intensity and flight time, thereby reducing the false alarm rate. The results demonstrate the feasibility of the proposed target detection method, which achieves a mean average precision of 0.809 at an intersection over union (IoU) of 0.50, a mean average precision of 0.324 at an IoU of 0.50–0.95, and a throughput of 49.8 Giga floating-point operations per second (GFLOPs), indicating that it can address the current limitations in LSS target detection.

基于猫眼效应与深度学习融合的低空目标探测

周斌1,王伟明2,闫宁1,赵琳琳1,李传真1
1郑州科技学院电子与电气工程学院,中国郑州市,450064
2雄安创新研究院微纳传感器件技术实验室,中国雄安新区,071800
摘要:本文针对在复杂关键环境中探测"低慢小"(LSS)无人机的迫切需求,提出一种基于猫眼效应的主动式低空目标探测方法。该探测系统集成了主控模块、激光发射组件、共光路周视扫描光机结构、回波接收组件、目标检测及可视化处理功能,以实现小型目标的探测。光源采用近红外激光发射,扫描光路通过微机电系统(MEMS)镜片与伺服机构实现。回波接收信号由雪崩光电二极管(APD)与目标检测模块共同捕获,该模块可获取反射信号及距离信息。检测软件通过无人机微透镜识别算法,整合局部金字塔注意力(LPA)模块与场金字塔网络(FPN),结合SKNet21模型消除误报,并利用APD采集回波强度与飞行时间数据,有效降低误报率。实验结果验证了该目标检测方法的可行性:在交并比(IoU)为0.50时其平均精度达0.809,在IoU 0.50─0.95区间内其平均精度达0.324,计算吞吐量为49.8 GFLOPs。该方法可突破LSS目标检测的现有局限。

关键词:低空探测;光路探测;猫眼效应;SKNet21;局部金字塔注意力;平均精度

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]AlKhonaini A, Sheltami T, Mahmoud A, et al., 2024. UAV detection using reinforcement learning. Sensors, 24(6):1870.

[2]Bao L, Guo ZT, Gao XZ, et al., 2025. Stealth UAV path planning based on DDQN against multi-radar detection. Aerospace, 12(9):774.

[3]Bishop BB, Tufariello J, 2019. Overview of acoustic detection for counter unmanned aircraft systems. J Acoust Soc Am, 145(3):1661.

[4]Cai C, Wang YW, Ma PF, et al., 2025. Improvement and implementation of UAV target detection algorithm based on YOLOv10. Acad J Comput Inform Sci, 8(7):72-78.

[5]Chang H, Wang ZS, 2024. UAV vehicle detection system based on YOLOv8. J Phys Conf Ser, 2872(1):012019.

[6]Du XC, Wang CR, Zhou HR, et al., 2024. Progress in laser active detection technology based on the cat’s eye effect. Results Phys, 67:108030.

[7]Elyousseph H, Altamimi M, 2024. Robustness of deep-learning-based RF UAV detectors. Sensors, 24(22):7339.

[8]Fan YC, Zhang LX, Liu BL, et al., 2020. The influence of cat’s eye effect on CEMRR FSO gain under defocus oblique incidence. Proc SPIE Advanced Laser Technology and Application, Article 115620M.

[9]Farlik J, Kratky M, Casar J, et al., 2019. Multispectral detection of commercial unmanned aerial vehicles. Sensors, 19(7):1517.

[10]Figueiredo A, Amaral J, Mendes M, et al., 2025. Experimental dataset of video and radar detection for cooperative perception in urban environment. Data Brief, 63:112091.

[11]Goldman GH, 2016. Acoustic detection results for a small unmanned aircraft system extrapolated over range. J Acoust Soc Am, 140(S4):3120.

[12]Huangfu ZM, Li SQ, 2023. Lightweight you only look once v8: an upgraded you only look once v8 algorithm for small object identification in unmanned aerial vehicle images. Appl Sci, 13(22):12369.

[13]Li J, Ye DH, Kolsch M, et al., 2021. Fast and robust UAV to UAV detection and tracking from video. IEEE Trans Emerg Top Comput, 10(3):1519-1531.

[14]Liaquat S, Faizan M, Chattha JN, et al., 2024. A framework for preventing unauthorized drone intrusions through radar detection and GPS spoofing. Ain Shams Eng J, 15(5):102707.

[15]Liu BL, Luo H, 2022. An improved Yolov5 for multi-rotor UAV detection. Electronics, 11(15):2330.

[16]Liu YC, Liao LC, Wu H, et al., 2021. Trajectory and image-based detection and identification of UAV. Visual Comput, 37(7):1769-1780.

[17]Lv Z, Du XC, Zhang K, et al., 2022. Three-dimensional echo distribution analysis of multi-band and oblique Gaussian beams propagating through cat-eye optical system. Opt Laser Technol, 151:108044.

[18]Nguyen PT, Nguyen GL, Bui DD, 2025. LW-UAV–YOLOv10: a lightweight model for small UAV detection on infrared data based on YOLOv10. Geomatica, 77(1):100049.

[19]Rahman MH, Sejan MAS, Aziz MA, et al., 2024. A comprehensive survey of unmanned aerial vehicles detection and classification using machine learning approach: challenges, solutions, and future directions. Remote Sens, 16(5):879.

[20]Randieri C, Ganesh SV, Raj RDA, et al., 2025. Aerial autonomy under adversity: advances in obstacle and aircraft detection techniques for unmanned aerial vehicles. Drones, 9(8):549.

[21]Wang G, Zhang YM, Ai Q, 2024. Lightweight aerial target detection algorithm with enhanced small target perception. IAENG Int J Comput Sci, 51(12):2123-2134.

[22]Wang XW, Hu Y, Liang Q, et al., 2025. An improved YOLOv8s-based UAV target detection algorithm. PLoS ONE, 20(8):e0327732.

[23]Xu L, Luo ZQ, 2025. Anti-UAV detection and identification technology: fundamentals, methods and challenges. Phys Commun, 71:102676.

[24]Yasir PAA, Goyal SK, 2021. Polarization selective Dove prism. Opt Express, 29(10):14917-14930.

[25]Zakaria NAZ, Rozaimi FNSM, Ab Rahim SAE, et al., 2024. Signal analysis for drone detection and characterization using acoustic radar. J Phys Conf Ser, 2922:012003.

[26]Zhang QQ, Zhou L, An JS, 2024. Real-time recognition algorithm of small target for UAV infrared detection. Sensors, 24(10):3075.

[27]Zhang WH, Li ZH, Wang YR, et al., 2025. Sensitive micro UAV detection based on a high-repetition-rate single-photon LiDAR. Opt Express, 33(8):18102-18111.

[28]Zheng CW, Liu LM, Fu Q, et al., 2025. YOLO-DD: a lightweight framework for UAV detection in complex environments via boundary-aware fusion. EURASIP J Adv Signal Process, 2025(1):44.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2026 Journal of Zhejiang University-SCIENCE