CLC number: TP273+.2
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 0000-00-00
Cited: 0
Clicked: 5530
CAO Yi-jia, ZHANG Hong-xian. An adaptive strategy for controlling chaotic system[J]. Journal of Zhejiang University Science A, 2003, 4(3): 258-263.
@article{title="An adaptive strategy for controlling chaotic system",
author="CAO Yi-jia, ZHANG Hong-xian",
journal="Journal of Zhejiang University Science A",
volume="4",
number="3",
pages="258-263",
year="2003",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2003.0258"
}
%0 Journal Article
%T An adaptive strategy for controlling chaotic system
%A CAO Yi-jia
%A ZHANG Hong-xian
%J Journal of Zhejiang University SCIENCE A
%V 4
%N 3
%P 258-263
%@ 1869-1951
%D 2003
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2003.0258
TY - JOUR
T1 - An adaptive strategy for controlling chaotic system
A1 - CAO Yi-jia
A1 - ZHANG Hong-xian
J0 - Journal of Zhejiang University Science A
VL - 4
IS - 3
SP - 258
EP - 263
%@ 1869-1951
Y1 - 2003
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2003.0258
Abstract: This paper presents an adaptive strategy for controlling chaotic systems. By employing the phase space reconstruction technique in nonlinear dynamical systems theory, the proposed strategy transforms the nonlinear system into canonical form, and employs a nonlinear observer to estimate the uncertainties and disturbances of the nonlinear system, and then establishes a state-error-like feedback law. The developed control scheme allows chaos control in spite of modeling errors and parametric variations. The effectiveness of the proposed approach has been demonstrated through its applications to two well-known chaotic systems: Duffing oscillator and Rossler chaos.
[1]Ben-Israel, A. and Greville, T. N. E., 1974. Generalized Inverse: Theory and Applications. John Wiley, New York.
[2]Cao, Y. J., 2000. A nonlinear adaptive approach to controlling chaotic oscillators. Phys. Lett. A, 270(3/4):171-175.
[3]Femat, R., Alvarez-Ramirez, J., Castillo-Toledo, B. and Gonzalez, J., 1999. On robust chaos suppression in a class of nondriven oscillators: application to the chua's circuit.IEEE Trans. Circuits. and Syst.I, 46(9):1150-1152.
[4]Fradkov, A. L. and Yu, A., 1996. Speed gradient control of chaotic continuous-time systems. IEEE Trans. Circuits and Syst.I, 43:907-913.
[5]Han, J. Q., 1995. An extended nonlinear observer. J. Control and Decision,10:85-89.
[6]Isidori, A., 1989. Nonlinear Control Systems, 2nd ed. Springer-Verlag,New York.
[7]Itoh, M., Wu, C. W. and Chua, L. O., 1997. Communication systems via chaotic signals from a reconstruction viewpoint. Int. J. of Bifurcation and Chaos, 7:275-286.
[8]Jiang, L., 2001a. Nonlinear Adaptive Control and Applications in Power Systems. PhD Thesis, University of Liverpool, UK.
[9]Jiang, L., Wu, Q. H., Zhang, C. and Zhou, X. X., 2001b. Observer-based nonlinear control of synchronous generator with perturbation estimation. International Journal of Electrical Power and Energy Systems, (6):22-28.
[10]Levant, A., 1993. Sliding order and sliding accuracy in sliding mode control. Int. J. of Control, 58(6):1247-1263.
[11]Levant, A., 1998. Robust exact differentiation via sliding mode technique. Automatica, 34(3):379-384.
[12]Ott, E., Grebogi, C. and Yorke, J. Y., 1990. Controlling chaos. Phys. Rev. Lett., 64:1196-1199.
[13]Packard, N. H., Crutchfield, J. P., Farmer, J. D. and Shaw, R. S., 1980. Geometry from a time series. Phys. Rev. Lett., 45:712-715.
[14]Takens, F., 1980. Dynamical Systems and Turbulence, Lecture Notes in Maths. Springer-Verlag, New York.
[15]Zhang, C., Zhou, X. X., Cao Y. J. and Wu, Q. H., 1998. A disturbance auto-rejection control of TCSC. In: Proc. IEE Control 98, 2:1017-1023.
Open peer comments: Debate/Discuss/Question/Opinion
<1>