CLC number: X172; V444.3
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 0000-00-00
Cited: 6
Clicked: 5551
Feng Dao-lun, Wu Zu-cheng. Culture of Spirulina platensis in human urine for biomass production and O2 evolution[J]. Journal of Zhejiang University Science B, 2006, 7(1): 34-37.
@article{title="Culture of Spirulina platensis in human urine for biomass production and O2 evolution",
author="Feng Dao-lun, Wu Zu-cheng",
journal="Journal of Zhejiang University Science B",
volume="7",
number="1",
pages="34-37",
year="2006",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2006.B0034"
}
%0 Journal Article
%T Culture of Spirulina platensis in human urine for biomass production and O2 evolution
%A Feng Dao-lun
%A Wu Zu-cheng
%J Journal of Zhejiang University SCIENCE B
%V 7
%N 1
%P 34-37
%@ 1673-1581
%D 2006
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2006.B0034
TY - JOUR
T1 - Culture of Spirulina platensis in human urine for biomass production and O2 evolution
A1 - Feng Dao-lun
A1 - Wu Zu-cheng
J0 - Journal of Zhejiang University Science B
VL - 7
IS - 1
SP - 34
EP - 37
%@ 1673-1581
Y1 - 2006
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2006.B0034
Abstract: Attempts were made to culture Spirulina platensis in human urine directly to achieve biomass production and o2 evolution, for potential application to nutrient regeneration and air revitalization in life support system. The culture results showed that Spirulina platensis grows successfully in diluted human urine, and yields maximal biomass at urine dilution ratios of 140~240. Accumulation of lipid and decreasing of protein occurred due to N deficiency. O2 release rate of Spirulina platensis in diluted human urine was higher than that in Zarrouk medium.
[1] APHA (American Public Health Association), AWWA (American Water Works Association), WEF (Water pollution Control Federation), 1995. Standard Methods for Water and Wastewater Examination. Washington DC.
[2] Carvalho, J.C.M., Francisco, F.R., Almeida, K.A., Sato, S., Converti, A., 2004. Cultivation of Arthrospira (Spirulina) platensis (cyanophuceae) by fed-batch addition of ammonia chloride at exponentially increasing feeding rates. J. Phycol., 40:589-597.
[3] Ciferri, O., Tiboni, O., 1985. The biochemistry and industrial potential of Spirulina. Annu. Rev. Microbiol., 89:503-526.
[4] Gitelson, J.I., Rodicheva, E.K., 1993. Self-Restoration a Specific Feature of Biological Life Support Systems. SAE Technical Paper Series No. 961495, 26th International Conference on Environmental Systems 8-11, California.
[5] Gòdia, F., Albiol, J., Montesinos, J.L., Pérez, J., Creus, N., Cabello, F., Mengual, X., Montras, A., Lasseur, C., 2002. MELISSA: a loop of interconnected bioreactors to develop life support in Space. J. Biotechnol., 99:319-330.
[6] Gordon, R., 1982. Essentials of Human Physiology, 2nd Ed. Year Book Medical Publishers, Chicago.
[7] Gros, J.B., Poughon, L., Lasseur, C., Tikhomirov, A.A., 2003. Recycling efficiencies of C, H, O, N, S and P elements in a biological life support system based on microorganisms and higher plants. Adv. Space Res., 31(1):195-199.
[8] Larsen, T.A., Peters, I., Alder, A., Eggen, R., Maurer, M., Muncke, J., 2001. Re-engineering the toilet for sustainable wastewater management. Environ. Sci. Technol., 35(9):192A-197A.
[9] Ogbonna, J.C., Yada, H., Tanaka, H., 1995. Light supply coefficient: a new engineering parameter for photobioreactor design. J. Fermen. Bioeng., 80(4):369-376.
[10] Ritchie, R.J., Prvan, T., 1996. A simulation study on designing experiments to measure the Km of Michaelis-Menten kinetics curves. J. Theor. Biol., 178:239-254.
[11] Sullivan, D.M., Carpenter, D.E., 1993. Methods of Analysis for Nutrition Labeling. AOAC International, Arlington, VA, p.85-104.
[12] Volker, B., Frank, P., 2001. Aquatic modules for bioregenerative life support system based on the C.E.B.A.S biotechnology. Acta Astronaut., 48:287-297.
Open peer comments: Debate/Discuss/Question/Opinion
<1>