CLC number: O359
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 0000-00-00
Cited: 1
Clicked: 5384
ZHOU Kun, LIN Jian-zhong. Research on 3D fiber orientation distribution in arbitrary planar flows[J]. Journal of Zhejiang University Science A, 2007, 8(7): 1021-1025.
@article{title="Research on 3D fiber orientation distribution in arbitrary planar flows",
author="ZHOU Kun, LIN Jian-zhong",
journal="Journal of Zhejiang University Science A",
volume="8",
number="7",
pages="1021-1025",
year="2007",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2007.A1021"
}
%0 Journal Article
%T Research on 3D fiber orientation distribution in arbitrary planar flows
%A ZHOU Kun
%A LIN Jian-zhong
%J Journal of Zhejiang University SCIENCE A
%V 8
%N 7
%P 1021-1025
%@ 1673-565X
%D 2007
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2007.A1021
TY - JOUR
T1 - Research on 3D fiber orientation distribution in arbitrary planar flows
A1 - ZHOU Kun
A1 - LIN Jian-zhong
J0 - Journal of Zhejiang University Science A
VL - 8
IS - 7
SP - 1021
EP - 1025
%@ 1673-565X
Y1 - 2007
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2007.A1021
Abstract: A non-stretchable fiber rotation in planar flows has been solved. The fiber will rotate periodically or run to the asymptotical direction decided by a discriminant defined in the paper involving the fiber aspect ratio and the flow characteristics. Subsequently the fiber orientation distribution is derived directly without the bother of solving the Fokker-Planck equation. The research clearly indicates the overall configuration of a fiber rotation movement in planar flows.
[1] Batchelor, G.K., 1970a. The stress system in a suspension of force-free particles. J. Fluid Mech., 41(3):545-570.
[2] Batchelor, G.K., 1970b. Slender-body theory for particles of arbitrary cross-section in Stokes flow. J. Fluid Mech., 44(3):419-440.
[3] Batchelor, G.K., 1971. The stress generated in a non-dilute suspension of elongated particles by pure straining motion. J. Fluid Mech., 46(4):813-229.
[4] Bretherton, F.P., 1962. The motion of rigid particles in a shear flow at low Reynolds number. J. Fluid Mech., 14(2):284-304.
[5] Courant, R., Hilbert, D., 1966. Method of Mathematical Physics, Volume II: Partial Differential Equations. Interscience Publishers, New York.
[6] Jeffery, G.B., 1922. The motion of ellipsoidal particles immersed in a viscous fluid. Proc. R. Soc. London A, 102:161-179.
[7] Lin, J.Z., Zhang, W.F., Wang, Y.L., 2002. Research on the orientation distribution of fibers immersed in a pipe flow. J. Zhejiang Univ. Sci., 3(5):501-506.
[8] Szeri, A.J., Leal, L.G., 1992. A new computational method for the solution of flow problems of microstructured fluids. Part 1. Theory. J. Fluid Mech., 242:549-576.
[9] Zhang, L.X., Lin, J.Z., 2003. On the structural features of fiber suspensions in converging channel flow. J. Zhejiang Univ. Sci., 4(4):400-406.
[10] Zhang, L.X., Lin, J.Z., Chan, T.L., 2005. Orientation distribution of cylindrical particles suspended in a turbulent pipe flow. Phys. Fluids, 17(9):093105-1-093105-8.
[11] Zhou, K., Lin, J.Z., 2005. Research on the behavior of fiber orientation probability distribution function in the planar flows. J. Zhejiang Univ. Sci., 6A(4):257-264.
Open peer comments: Debate/Discuss/Question/Opinion
<1>
Jetteandy@No address<xfersamrnas@gmail.com>
2011-03-13 02:26:10
sokat tanultam