CLC number: TP317.4; Q27
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 0000-00-00
Cited: 2
Clicked: 6058
Xiang-ping WU, Jie-yue LI, Ying-ke XU, Ke-di XU, Xiao-xiang ZHENG. Three-dimensional tracking of GLUT4 vesicles in TIRF microscopy[J]. Journal of Zhejiang University Science A, 2008, 9(2): 232-240.
@article{title="Three-dimensional tracking of GLUT4 vesicles in TIRF microscopy",
author="Xiang-ping WU, Jie-yue LI, Ying-ke XU, Ke-di XU, Xiao-xiang ZHENG",
journal="Journal of Zhejiang University Science A",
volume="9",
number="2",
pages="232-240",
year="2008",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A061659"
}
%0 Journal Article
%T Three-dimensional tracking of GLUT4 vesicles in TIRF microscopy
%A Xiang-ping WU
%A Jie-yue LI
%A Ying-ke XU
%A Ke-di XU
%A Xiao-xiang ZHENG
%J Journal of Zhejiang University SCIENCE A
%V 9
%N 2
%P 232-240
%@ 1673-565X
%D 2008
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A061659
TY - JOUR
T1 - Three-dimensional tracking of GLUT4 vesicles in TIRF microscopy
A1 - Xiang-ping WU
A1 - Jie-yue LI
A1 - Ying-ke XU
A1 - Ke-di XU
A1 - Xiao-xiang ZHENG
J0 - Journal of Zhejiang University Science A
VL - 9
IS - 2
SP - 232
EP - 240
%@ 1673-565X
Y1 - 2008
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A061659
Abstract: TIRF microscopy has provided a means to view mobile granules within 100 nm in size in two dimensions. However quantitative analysis of the position and motion of those granules requires an appropriate tracking method. In this paper, we present a new tracking algorithm combined with the unique features of TIRF. Firstly a fluorescence correction procedure was processed to solve the problem of fluorescence bleaching over time. Mobile granules were then segmented from a time-lapse image stack by an adaptive background subtraction method. kalman filter was introduced to estimate and track the granules that allowed reducing searching range and hence greater reliability in tracking process. After the tracked granules were located in x-y plane, the z-position was indirectly inferred from the changes in their intensities. In the experiments the algorithm was applied in tracking GLUT4 vesicles in living adipose cells. The results indicate that the algorithm has achieved robust estimation and tracking of the vesicles in three dimensions.
[1] Ahdesmäki, M., Lähdesmäki, H., Gracey, A., Shmulevich, L., Yli-Harja, O., 2007. Robust regression for periodicity detection in non-uniformly sampled time-course gene expression data. BMC Bioinformatics, 8(1):233-249.
[2] Bornfleth, H., Edelmann, P., Zink, D., Cremer, T., Cremer, C., 1999. Quantitative motion analysis of subchromosomal foci in living cells using four-dimensional microscopy. Biophys. J., 77(5):2871-2886.
[3] Caviston, J.P., Holzbaur, E.L., 2006. Microtuble motors at the intersection of trafficking and transport. Trends Cell Biol., 16(10):530-537.
[4] Cheezum, M.K., Walker, W.F., Guilford, W.H., 2001. Quantitative comparison of algorithms for tracking single fluorescent particles. Biophys. J., 81:2378-2388.
[5] Genovesio, A., Liedl, T., Emiliani, V., Parak, W.J., Coppey-Moisan, M., Olivo-Marin, J.C., 2006. Multiple particle tracking in 3-D+t microscopy: method and application to the tracking of endocytosed quantum dots. IEEE Trans. on Image Processing, 15(5):1062-1070.
[6] Gibson, S.F., Lanni, F., 1992. Experimental test of an analytical model of aberration in an oil-immersion objective lens used in three-dimensional light microscopy. J. Opt. Soc. Am. A., 9(1):154-166.
[7] Gross, S.P., 2004. Hither and Yon: a rview of bi-directional microtubule-based transport. Phys. Biol., 1(2):R1-R11.
[8] Hayman, E., Eklundh, J.Q., 2003. Statistical Background Subtraction for a Mobile Observer. Proc. Ninth IEEE Int. Conf. on Computer Vision (ICCV’03), 1:67-74.
[9] Huet, S., Karatekin, E., Tran, V.S., Fanget, I., Cribier, S., Henry, J.P., 2006. Analysis of transient behavior in complex trajectories: application to secretory vesicle dynamics. Biophys. J., 91:3542-3559.
[10] Isard, M., Blake, A., 1998. Condensation—conditional density propagation for visual tracking. Int. J. Computer Vision, 29(1):5-28.
[11] Kalman, R.E., 1960. A new approach to linear filtering and prediction problems. Trans. ASME—J. Basic Eng., 82:35-45.
[12] Kervrann, C., Legland, D., Pardini, L., 2004. Robust incremental compensation of the light attenuation with depth in 3D fluorescence microscopy. J. Microscopy, 214:297-314.
[13] Lizunov, V.A., Matsumoto, H., Zimmerberq, J., Cushman, S.W., Frolov, V.A., 2005. Insulin stimulates the halting, tethering, and fusion of mobile GLUT4 vesicles in rat adipose cells. J. Cell Biol., 169(3):481-489.
[14] Oheim, M., Stuhmer, W., 2000. Tracking chromaffin granules on their way through the actin cortex. Eur. Biophys. J., 29(2):67-68.
[15] Piccardi, M., 2004. Background Subtraction Techniques: A Review. IEEE Int. Conf. on Systems, Man and Cybernetics, 4:3099-3104.
[16] Sbalzarini, I., Koumoutsakos, P., 2005. Feature point tracking and trajectory analysis for video imaging in cell biology. J. Struct. Biol., 151(2):182-195.
[17] Schneckenburger, H., Gschwend, M.H., Strauss, W.S.L., Sailer, R., Kron, M., Steeb, U., Steiner, R., 2004. Fluorescence lifetime imaging (FLIM) of rhodamine 123 in living cells. Photochem. Photobiol. Sci., 3:127-131.
[18] Smal, I., Niessen, W., Meijering, E., 2006. Bayesian Tracking for Fluorescence Microscopic Imaging. Proc. ISBI 2006, p.550-553.
[19] Smal, I., Niessen, W., Meijering, E., 2007. Advanced Particle Filtering for Multiple Object Tracking in Dynamic Fluorescence Microscopy Images. Proc. ISBI 2007, p.1048-1051.
[20] Steyer, J., Almers, W., 2001. A real-time view of life within 100 nm of the plasma membrane. Nat. Rev. Mol. Cell Biol., 2(4):268-276.
[21] Thomann, D., Rines, D.R., Sorger, P.K., Danuser, G., 2002. Automatic fluorescent tag detection in 3D with super-resolution: application to the analysis of chromosome movement. J. Microscopy, 208(1):49-64.
[22] Watson, R.T., Kanzaki, M., Pessin, J.E., 2004. Regulated membrane trafficking of the insulin-responsive glucose transporter 4 in adipocytes. Endocr. Rev., 25(2):177-204.
[23] Xu, Y.K., Xu, K.D., Li, J.Y., Feng, L.Q., Lang, D., Zheng, X.X., 2007. Bi-directional transport of GLUT4 vesicles near the plasma membrane of primary rat adipocytes. Biochem. Biophys. Res. Commun., 359(1):121-128.
Open peer comments: Debate/Discuss/Question/Opinion
<1>