Full Text:   <4300>

CLC number: O657.3; O643.3

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 0000-00-00

Cited: 20

Clicked: 7203

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2008 Vol.9 No.5 P.720-726

http://doi.org/10.1631/jzus.A071503


IR study on surface chemical properties of catalytic grown carbon nanotubes and nanofibers


Author(s):  Li-hua TENG, Tian-di TANG

Affiliation(s):  Institute of Biology and Environmental Science, Zhejiang Wanli University, Ningbo 315100, China; more

Corresponding email(s):   tlh_98@163.com

Key Words:  Carbon nanotubes (CNTs), Carbon nanofibers (CNFs), Functional surface groups, Infrared (IR) spectroscopy


Share this article to: More <<< Previous Article|

Li-hua TENG, Tian-di TANG. IR study on surface chemical properties of catalytic grown carbon nanotubes and nanofibers[J]. Journal of Zhejiang University Science A, 2008, 9(5): 720-726.

@article{title="IR study on surface chemical properties of catalytic grown carbon nanotubes and nanofibers",
author="Li-hua TENG, Tian-di TANG",
journal="Journal of Zhejiang University Science A",
volume="9",
number="5",
pages="720-726",
year="2008",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A071503"
}

%0 Journal Article
%T IR study on surface chemical properties of catalytic grown carbon nanotubes and nanofibers
%A Li-hua TENG
%A Tian-di TANG
%J Journal of Zhejiang University SCIENCE A
%V 9
%N 5
%P 720-726
%@ 1673-565X
%D 2008
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A071503

TY - JOUR
T1 - IR study on surface chemical properties of catalytic grown carbon nanotubes and nanofibers
A1 - Li-hua TENG
A1 - Tian-di TANG
J0 - Journal of Zhejiang University Science A
VL - 9
IS - 5
SP - 720
EP - 726
%@ 1673-565X
Y1 - 2008
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A071503


Abstract: 
In this study, the surface chemical properties of carbon nanotubes (CNTs) and carbon nanofibers (CNFs) grown by catalytic decomposition of methane on nickel and cobalt based catalysts were studied by DRIFT (Diffuse Reflectance Infrared Fourier Transform) and transmission infrared (IR) spectroscopy. The results show that the surface exists not only carbon-hydrogen groups, but also carboxyl, ketene or quinone (carbonyl) oxygen-containing groups. These functional groups were formed in the process of the material growth, which result in large amount of chemical defect sites on the walls.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1] Aguilar, C., García, R., Soto-Garrido, G., Arriagada, R., 2003. Catalytic wet air oxidation of aqueous ammonia with activated carbon. Applied Catalysis B: Environmental, 46(2):229-237.

[2] Bezemer, G.L., Radstake, P.B., Falke, U., Oosterbeek, H., Kuipers, H.P.C.E., van Dillen, A.J., de Jong, K.P., 2006. Investigation of promoter effects of manganese oxide on carbon nanofibers supported cobalt catalysts for Fischer-Tropsch synthesis. J. Catal., 237(1):152-161.

[3] Boehm, H.P., 2002. Surface oxides on carbon and their analysis: a critical assessment. Carbon, 40(2):145-149.

[4] Chen, J., Hamon, M.A., Hu, H., Chen, Y., Rao, A.M., Eklund, P.C., Haddon, R.C., 1998. Solution properties of single-walled carbon nanotubes. Science, 282(5386):95-98.

[5] Dandekar, A., Baker, R.T.K., Vannice, M.A., 1998. Characterization of activated carbon, graphitized carbon fibers and synthetic diamond powder using TPD and DRIFTS. Carbon, 36(12):1821-1831.

[6] de Jong, K.P., Geus, J.W., 2000. Carbon nanofibers: Catalytic synthesis and applications. Catalysis Reviews, 42(4):481-510.

[7] de la Puente, G., Centeno, A., Gil, A., Grange, P., 1998. Interactions between molybdenum and activated carbons on the preparation of activated carbon-supported molybdenum catalysts. Journal of Colloid and Interface Science, 202(1):155-166.

[8] Fanning, P.E., Vannice, M.A., 1993. A DRIFTS study of the formation of surface groups on carbon by oxidation. Carbon, 31(5):721-730.

[9] Garcia, J., Gomes, H.T., Serp, P., Kalck, P., Figueiredo, J.L., Faria, J.L., 2006. Carbon nanotube supported ruthenium catalysts for the treatment of high strength wastewater with aniline using wet air oxidation. Carbon, 44(12):2384-2391.

[10] Gomez-Serrano, V., Piriz-Almeida, F., Duran-Valle, C.J., Pastor-Villegas, J., 1999. Formation of oxygen structures by air activation. A study by FT-IR spectroscopy. Carbon, 37(10):1517-1528.

[11] Jung, Y.S., Jeon, D.Y., 2002. Surface structure and field emission property of carbon nanotubes grown by radio-frequency plasma-enhanced chemical vapor deposition. Appl. Surf. Sci., 193(1-4):129-137.

[12] Kuznetsova, A., Mawhinney, D., Naumenko, B.V., Yates, J.T.Jr., Liu, J., Smalley, R.E., 2000. Enhancement of adsorption inside of single-walled nanotubes opening the entry ports. Chem. Phys. Lett., 321(3-4):292-296.

[13] Li, Y.D., Chen, J.L., Chang, L., 1997. Catalytic growth of carbon fibers from methane on a nickel-alumina composite prepared from Feiknecht compound precursor. Applied Catalysis A: General, 163(1-2):45-57.

[14] Li, Y.D., Chen, J.L., Chang, L., Qin, Y.N., 1998. The doping effect of copper on the catalytic growth of carbon fibers from methane over a Ni/Al2O3 catalyst prepared from Feitknecht compound precursor. J. Catal., 178(1):76-83.

[15] Marchon, B., Carrazza, J., Heinemann, H., Somorjai, G.A., 1988. TPD and XPS studies of O2, CO2, and H2O adsorption on clean polycrystalline graphite. Carbon, 26(4):507-514.

[16] Martinez, M.T., Callejas, M.A., Benito, A.M., Cochet, M., Seeger, T., Anson, A., Schreiber, J., Gordon, C., Marhic, C., Chauvet, O., Fierro, J.L.G., Maser, W.K., 2003. Sensitivity of single wall carbon nanotubes to oxidative processing: structural modification, intercalation and functionalisation. Carbon, 41(12):2247-2256.

[17] Mawhinney, D.B., Naumenko, V., Kuznetsova, A., Yates, J.T.Jr., 2000. Infrared spectral evidence for the etching of carbon nanotubes: ozone oxidation at 298 K. J. Am. Chem. Soc., 122(10):2383-2384.

[18] Moreno-Castilla, C., Carrasco-Marin, F., Maldonado-Hodar, F.J., Rivera-Utrilla, J., 1998. Effects of non-oxidant and oxidant acid treatments on the surface properties of an activated carbon with very low ash content. Carbon, 36(1-2):145-151.

[19] Moreno-Castilla, C., Lopez-Ramon, M.V., Carrasco-Marin, F., 2000. Changes in surface chemistry of activated carbons by wet oxidation. Carbon, 38(14):1995-2001.

[20] Nhut, J.M., Pesant, L., Tessonnier, J.P., Wine, G., Guille, J., Pham-Huu, C., Ledoux, M.J., 2003. Mesoporous carbon nanotubes for use as support in catalysis and as nanosized reactors for one-dimensional inorganic material synthesis. Applied Catalysis A: General, 254(2):345-363.

[21] Pawelec, B., la Parola, V., Navarro, R.M., Murcia-Mascar, S., Fierro, J.L.G., 2006. On the origin of the high performance of MWNT-supported Pt-Pd catalysts for aromatic hydrogenation. Carbon, 44(1):84-98.

[22] Piao, L.Y., Li, Y.D., Chen, J.L., Chang, L., Lin, Y.S., 2002. Methane decomposition to carbon nanotubes and hydrogen on an alumina supported nickel aerogel catalyst. Catal. Today, 74(1-2):145-155.

[23] Popov, V.N., 2004. Carbon nanotubes: properties and application. Materials Science and Engineering: R: Reports, 43(3):61-102.

[24] Puziy, A.M., Poddubnaya, O.I., Martinez-Alonso, A., Suarez-Garcia, F., Tascon, J.M.D., 2002. Synthetic carbons activated with phosphoric acid I. Surface chemistry and ion binding properties. Carbon, 40(9):1493-1505.

[25] Qian, D., Wagner, G.J., Liu, W.K., Yu, M.F., Ruoff, R.S., 2002. Mechanics of carbon nanotubes. Appl. Mech. Rev., 55(6):495-533.

[26] Rodriguez, N.M., 1993. A review of catalytically grown carbon nanofibers. J. Mater. Res., 8(12):3233-3250.

[27] Ros, T.G., 2002. Rhodium Complexes and Particles on Carbon Nanofibres. Ph.D Thesis, Utrecht University, The Netherlands.

[28] Serp, P., Corrias, M., Kalck, P., 2003. Carbon nanotubes and nanofibers in catalysis. Applied Catalysis A: General, 253(2):337-358.

[29] Shaffer, M.S.P., Fan, X., Windle, A.H., 1998. Dispersion and packing of carbon nanotubes. Carbon, 36(11):1603-1612.

[30] Shin, S., Jang, J., Yoon, S.H., Mochida, I., 1997. A study on the effect of heat treatment on functional groups of pitch based activated carbon fiber using FTIR. Carbon, 35(12):1739-1743.

[31] Srivastava, D., Wei, C., Cho, K., 2003. Nanomechanics of carbon nanotubes and composites. Appl. Mech. Rev., 56(2):215-230.

[32] Starsinic, M., Taylor, R.L., Walker, P.L.Jr., Painter, P.C., 1983. FTIR studies of saran chars. Carbon, 21(1):69-74.

[33] Tang, T.D., 2005. Study on Carbon Nanofibers Supported Pd-Pt Catalyst for Naphthalene Hydrogenation. Ph.D Thesis, Tianjin University, China (in Chinese).

[34] Thostenson, E.T., Ren, Z., Chou, T.W., 2001. Advances in the science and technology of carbon nanotubes and their composites: a review. Composites Science and Technology, 61(13):1899-1912.

[35] Yang, T., Lua, A.C., 2003. Characteristics of activated carbons prepared from pistachio-nut shells by physical activation. Journal of Colloid and Interface Science, 267(2):408-417.

[36] Zhao, Y., Li, C.H., Yu, Z.X., Yao, K.F., Ji, S.F., Ji, L., 2007. Effect of microstructures of Pt catalysts supported on carbon nanotubes (CNTs) and activated carbon (AC) for nitrobenzene hydrogenation. Materials Chemistry and Physics, 103(2-3):225-229.

[37] Zielke, U., Huttinger, K.J., Hoffman, W.P., 1996. Surface-oxidized carbon fibers: I. Surface structure and chemistry. Carbon, 34(8):983-998.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE