CLC number: TH134
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2009-07-02
Cited: 0
Clicked: 6893
Ping FANG, Qi-peng LI, Fan DING. A current-differential-based method for improving dynamic characteristics of electromagnetic actuators[J]. Journal of Zhejiang University Science A, 2009, 10(9): 1241-1244.
@article{title="A current-differential-based method for improving dynamic characteristics of electromagnetic actuators",
author="Ping FANG, Qi-peng LI, Fan DING",
journal="Journal of Zhejiang University Science A",
volume="10",
number="9",
pages="1241-1244",
year="2009",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A0920079"
}
%0 Journal Article
%T A current-differential-based method for improving dynamic characteristics of electromagnetic actuators
%A Ping FANG
%A Qi-peng LI
%A Fan DING
%J Journal of Zhejiang University SCIENCE A
%V 10
%N 9
%P 1241-1244
%@ 1673-565X
%D 2009
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A0920079
TY - JOUR
T1 - A current-differential-based method for improving dynamic characteristics of electromagnetic actuators
A1 - Ping FANG
A1 - Qi-peng LI
A1 - Fan DING
J0 - Journal of Zhejiang University Science A
VL - 10
IS - 9
SP - 1241
EP - 1244
%@ 1673-565X
Y1 - 2009
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A0920079
Abstract: This paper presents a new control strategy based on current differential feedback to accelerate the dynamic response of electromagnetic actuators, instead of traditional closed-loop control based on displacement feedback. The method mainly includes a differentiator, proportioner and signal synthesizer. Analysis and simulation on the step characteristics of an electromagnetic actuator were discussed, and all the results show that the approach can improve the actuator’s step response greatly. Finally, the control method is applied to a real gravure system which verifies the control performance.
[1] Clark, R.E., Jewell, G.W., Forrest, S.J., Rens, J., Maerky, C., 2005. Design features for enhancing the performance of electromagnetic valve actuation systems. IEEE Transactions on Magnetics, 41(3):1163-1168.
[2] Cvetkovic, D., Cosic, I., Subic, A., 2008. Improved performance of the electromagnetic fuel injector solenoid actuator using a modelling approach. International Journal of Applied Electromagnetics and Mechanics, 27(1):251-273.
[3] Darl, J.U., 2005. Actuator for Operation of a Low Voltage Circuit Breaker Uses a Spring as Energy Store for Fast Response. Patent DE 10343348.1.
[4] Fang, P., Ding, F., Li, Q.P., 2006. Novel high-response electromagnetic actuator for electronic engraving systems. IEEE Transactions on Magnetics, 42(3):460-464.
[5] Huang, M., Moses, A., Anayi, F., 2006. Position Calibration Techniques Comparison for Sensorless Controlled PMSM. Proceedings of IEEE International Magnetics Conference, p.979.
[6] Mianzo, L., Peng, H., 2007. Output feedback H-infinity preview control of an electromechanical valve actuator. IEEE Transactions on Control Systems Technology, 15(3):428-437.
[7] Peterson, P., Novikov, M., Hsu, J., Gass, H., Sankar, S.G., Simizu, S., Obermyer, R.T., Zande, B., Chandhok, V.K., Margolin, A., 2002. Design and Construction of a Linear Actuator with NdFeB Magnets for a High Frequency Motion Simulator. Proceedings of 17th International Workshop on Rare Earth Magnets and Their Applications, p.490-503.
[8] Rahman, M.F., Cheung, N.C., Lim, K.W., 1995. Position Estimation in Solenoid Actuators. Proceeding of IEEE Industry-Applications-Society Annual Meeting, p.552-559.
[9] Zhang, C., Fang, P., Ding, F., Li, Q.P., 2006. Moving-iron Type Electromagnetic Actuator. Patent CN 1588584.
Open peer comments: Debate/Discuss/Question/Opinion
<1>