CLC number: TU37; TP391
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2012-05-15
Cited: 8
Clicked: 7044
Francisco J. Martinez-Martin, Fernando Gonzalez-Vidosa, Antonio Hospitaler, Vctor Yepes. Multi-objective optimization design of bridge piers with hybrid heuristic algorithms[J]. Journal of Zhejiang University Science A, 2012, 13(6): 420-432.
@article{title="Multi-objective optimization design of bridge piers with hybrid heuristic algorithms",
author="Francisco J. Martinez-Martin, Fernando Gonzalez-Vidosa, Antonio Hospitaler, Vctor Yepes",
journal="Journal of Zhejiang University Science A",
volume="13",
number="6",
pages="420-432",
year="2012",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1100304"
}
%0 Journal Article
%T Multi-objective optimization design of bridge piers with hybrid heuristic algorithms
%A Francisco J. Martinez-Martin
%A Fernando Gonzalez-Vidosa
%A Antonio Hospitaler
%A Vctor Yepes
%J Journal of Zhejiang University SCIENCE A
%V 13
%N 6
%P 420-432
%@ 1673-565X
%D 2012
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1100304
TY - JOUR
T1 - Multi-objective optimization design of bridge piers with hybrid heuristic algorithms
A1 - Francisco J. Martinez-Martin
A1 - Fernando Gonzalez-Vidosa
A1 - Antonio Hospitaler
A1 - Vctor Yepes
J0 - Journal of Zhejiang University Science A
VL - 13
IS - 6
SP - 420
EP - 432
%@ 1673-565X
Y1 - 2012
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1100304
Abstract: This paper describes one approach to the design of reinforced concrete (RC) bridge piers, using a three-hybrid multi-objective simulated annealing (SA) algorithm with a neighborhood move based on the mutation operator from the genetic algorithms (GAs), namely MOSAMO1, MOSAMO2 and MOSAMO3. The procedure is applied to three objective functions: the economic cost, the reinforcing steel congestion and the embedded CO2 emissions. Additional results for a random walk and a descent local search multi-objective algorithm are presented. The evaluation of solutions follows the Spanish Code for structural concrete. The methodology was applied to a typical bridge pier of 23.97 m in height. This example involved 110 design variables. Results indicate that algorithm MOSAMO2 outperforms other algorithms regarding the definition of Pareto fronts. Further, the proposed procedure will help structural engineers to enhance their bridge pier designs.
[1]Balling, R.J., Yao, X., 1997. Optimization of reinforced concrete frames. ASCE Journal of Structural Engineering, 123(2):193-202.
[2]Bandyopadhyay, S., Saha, S., Maulik, U., Deb, K., 2008. A simulated annealing-based multi-objective optimization algorithm: AMOSA. IEEE Transactions on Evolutionary Computation, 12(3):269-283.
[3]Carbonell, A., Gonzalez-Vidosa, F., Yepes, V., 2011. Design of reinforced concrete road vault underpasses by heuristic optimization. Advances in Engineering Software, 42(4):151-159.
[4]Catalonia Institute of Construction Technology, 2009. BEDEC PR/PCT ITEC Materials Database, Barcelona, Spain.
[5]Cerny, V., 1985. Thermodynamical approach to the traveling salesman problem: An efficient simulation algorithm. Journal of Optimization Theory and Applications, 45(1):41-51.
[6]Coello, C.A., Christiansen, A.D., Santos, F., 1997. A simple genetic algorithm for the design of reinforced concrete beams. Engineering with Computers, 13(4):185-196.
[7]Cohn, M.Z., Dinovitzer, A.S., 1994. Application of structural optimization. ASCE Journal of Structural Engineering, 120(2):617-649.
[8]Deb, D., 2001. Multi-Objective Optimization Using Evolutionary Algorithms. Wiley, New York, USA.
[9]Dorigo, M., Maniezzo, V., Colorni, A., 1996. The ant system: optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 26(1):29-41.
[10]Holland, J.H., 1975. Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor, USA.
[11]Kaveh, A., Talatahari, S., 2009. Particle swarm optimizer, ant colony strategy and harmony search scheme hybridized for optimization of truss structures. Computers and Structures, 87(5-6):267-283.
[12]Kennedy, J., Eberhart, R., 1995. Particle Swarm Optimization. IEEE International Conference on Neural Networks, Perth, Australia. IEEE Service Center, Piscataway, p.1942-1948.
[13]Khajehzadeh, M., Taha, M.R., El-Shafie, A., Eslami, M., 2011. Modified particle swarm optimization for optimum design of spread footing and retaining wall. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 12(6):415-427.
[14]Kicinger, R., Arciszewski, T., de Jong, K., 2005. Evolutionary computation and structural design: A survey of the state-of-the-art. Computers and Structures, 83(23-24):1943-1978.
[15]Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P., 1983. Optimization by simulated annealing. Science, 220(4598):671-680.
[16]Koumousis, V.K., Arsenis, S.J., Vasiloglou, V.B., 1996. Detailed design of reinforced concrete buildings using logic programming. Advances in Engineering Software, 25(2-3):161-176.
[17]Lee, K.S., Geem, Z., 2004. A new structural optimization method based on the harmony search algorithm. Computers & Structures, 82(9-10):781-798.
[18]Marti, J.V., Gonzalez-Vidosa, F., 2010. Design of prestressed concrete precast pedestrian bridges by heuristic optimization. Advances in Engineering Software, 41(7-8):916-922.
[19]Martinez, F.J., Gonzalez-Vidosa, F., Hospitaler, A., Yepes, V., 2010. Heuristic optimization of RC bridge piers with rectangular hollow sections. Computers and Structures, 88(5-6):375-386.
[20]Ministerio de Fomento, 1998. IAP-98: Code on the Actions to be Considered for the Design of Road Bridges. Madrid, Spain (in Spanish).
[21]Ministerio de Fomento, 2008. EHE-08: Code of Structural Concrete. Madrid, Spain (in Spanish).
[22]Neville, A.M., 1981. Properties of Concrete, 3rd Edition. Pitman, London, UK.
[23]Paya, I., Yepes, V., Gonzalez-Vidosa, F., Hospitaler, A., 2008. Multi-objective optimization of concrete building frames by simulated annealing. Computer-Aided Civil and Infrastructure Engineering, 23(8):596-610.
[24]Paya-Zaforteza, I., Yepes, V., Hospitaler, A., Gonzalez-Vidosa, F., 2009. CO2-optimization of reinforced concrete frames by simulated annealing. Engineering Structures, 31(7):1501-1508.
[25]Perea, C., Alcalá, J., Yepes, V., González-Vidosa, F., Hospitaler, A., 2008. Design of reinforced concrete bridge frames by heuristic optimization. Advances in Engineering Software, 39(8):676-688.
[26]Ponz-Tienda, J.L., Pellicer, E., Yepes, V., 2012. Complete fuzzy scheduling and fuzzy earned value management in construction projects. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 13(1):56-68.
[27]Serafini, P., 1992. Simulated Annealing for Multiple Objective Optimization Problems. Proceedings of the Tenth International Conference on Multiple Criteria Decision Making, Taipei, p.87-96.
[28]Soke, A., Bingul, Z., 2006. Hybrid genetic algorithm and simulated annealing for two-dimensional non-guillotine rectangular packing problems. Engineering Applications of Artificial Intelligence, 19(5):557-567.
[29]Suppapitnarm, A., Seffen, K.A., Parks, G.T., Clarkson, P.J., 2000. A simulated annealing algorithm for multi-objective optimization. Engineering Optimization, 33(1):59-85.
[30]Wong, S.Y.W., 2001. Hybrid simulated annealing/genetic algorithm approach to short-term hydro-thermal scheduling with multiple thermal plants. International Journal of Electrical Power & Energy Systems, 23(7):565-575.
[31]Wu, T.H., Chung, S.H., Chang, C.C., 2009. Hybrid simulated annealing algorithm with mutation operator to the cell formation problem with alternative process routings. Expert Systems with Applications, 36(2):3652-3661.
[32]Yepes, V., Medina, J.R., 2006. Economic heuristic optimization for the heterogeneous fleet VRPHESTW. ASCE Journal of Transportation Engineering, 132(4):303-311.
[33]Yepes, V., Alcala, J., Perea, C., González-Vidosa, F., 2008. A parametric study of optimum earth-retaining walls by simulated annealing. Engineering Structures, 30(3):821-830.
[34]Yepes, V., Gonzalez-Vidosa, F., Alcala, J., Villalba, P., 2012. CO2-optimization design of reinforced concrete retaining walls based on a VNS-threshold acceptance strategy. ASCE Journal of Computing in Civil Engineering, 26(3):378-386.
[35]Zhang, W.M., Li, S.J., Qian, F., 2008. θ-PSO: a new strategy of particle swarm optimization. Journal of Zhejiang University-SCIENCE A, 9(6):786-790.
Open peer comments: Debate/Discuss/Question/Opinion
<1>