References
[1] Bhatt, I., Tripathi, B.N., 2011. Interaction of engineered nanoparticles with various components of the environment and possible strategies for their risk assessment.
Chemosphere, 82(3):308
[2] Britto, R.S., Garcia, M.L., Rocha, A.M., 2012. Effects of carbon nanomaterials fullerene C
60 and fullerol C
60(OH)
18–22 on gills of fish
Cyprinus carpio (Cyprinidae) exposed to ultraviolet radiation.
Aquatic Toxicology, 114-115:80-87.
[3] Chen, K.L., Elimelech, M., 2006. Aggregation and deposition kinetics of fullerene (C
60) nanoparticles.
Langmuir, 22(26):10994-11001.
[4] Chen, K.L., Elimelech, M., 2007. Influence of humic acid on the aggregation kinetics of fullerene (C
60) nanoparticles in monovalent and divalent electrolyte solutions.
Journal of Colloid and Interface Science, 309(1):126-134.
[5] Chen, K.L., Mylon, S.E., Elimelech, M., 2006. Aggregation kinetics of alginate-coated hematite nanoparticles in monovalent and divalent electrolytes.
Environmental Science & Technology, 40(5):1516-1523.
[6] Colvin, V.L., 2003. The potential environmental impact of engineered nanomaterials.
Nature Biotechnology, 21(10):1166-1170.
[7] Deguchi, S., Alargova, R.G., Tsujii, K., 2001. Stable dispersions of fullerenes, C
60 and C
70, in water. Preparation and characterization.
Langmuir, 17(19):6013-6017.
[8] Duncan, L.K., Jinschek, J.R., Vikesland, P.J., 2008. C
60 colloid formation in aqueous systems: effects of preparation method on size, structure, and surface, charge.
Environmental Science & Technology, 42(1):173-178.
[9] Hwang, Y.S., Li, Q.L., 2010. Characterizing photochemical transformation of aqueous nC
60 under environmentally relevant conditions.
Environmental Science & Technology, 44(8):3008-3013.
[10] Hyung, H., Kim, J.H., 2009. Dispersion of C
60 in natural water and removal by conventional drinking water treatment processes.
Water Research, 43(9):2463-2470.
[11] Isaacson, C.W., Bouchard, D.C., 2010. Effects of humic acid and sunlight on the generation and aggregation state of aqu/C
60 nanoparticles.
Environmental Science & Technology, 44(23):8971-8976.
[12] Kim, K., Jang, M., Kim, J., 2010. Effect of preparation methods on toxicity of fullerene water suspensions to Japanese medaka embryos.
Science of The Total Environment, 408(22):5606-5612.
[13] Kim, K.T., Jang, M.H., Kim, J.Y., 2012. Embryonic toxicity changes of organic nanomaterials in the presence of natural organic matter.
Science of The Total Environment, 426:423-429.
[14] Li, M.H., Huang, C.P., 2010. Stability of oxidized single-walled carbon nanotubes in the presence of simple electrolytes and humic acid.
Carbon, 48(15):4527-4534.
[15] Li, Q.L., Xie, B., Wang, Y.S., 2009. Kinetics of C
60 fullerene dispersion in water enhanced by natural organic matter and sunlight.
Environmental Science & Technology, 43(10):3574-3579.
[16] Lin, D.H., Liu, N., Yang, K., 2009. The effect of ionic strength and pH on the stability of tannic acid-facilitated carbon nanotube suspensions.
Carbon, 47(12):2875-2882.
[17] Lin, D.H., Liu, N., Yang, K., 2010. Different stabilities of multiwalled carbon nanotubes in fresh surface water samples.
Environmental Pollution, 158(5):1270-1274.
[18] Lin, D.H., Li, T.T., Yang, K., 2012. The relationship between humic acid (HA) adsorption on and stabilizing multiwalled carbon nanotubes (MWNTs) in water: effects of HA, MWNT and solution properties.
Journal of Hazardous Materials, 241-242:404-410.
[19] Lin, D.H., Tian, X.L., Li, T.T., 2012. Surface-bound humic acid increased Pb
2+ sorption on carbon nanotubes.
Environmental Pollution, 167:138-147.
[20] Mashayekhi, H., Ghosh, S., Du, P., 2012. Effect of natural organic matter on aggregation behavior of C
60 fullerene in water.
Journal of Colloid and Interface Science, 374(1):111-117.
[21] Nakamura, E., Isobe, H., 2003. Functionalized fullerenes in water. The first 10 years of their chemistry, biology, and nanoscience.
Accounts of Chemical Research, 36(11):807-815.
[22] Navarro, D.A., Kookana, R.S., Kirby, J.K., 2013. Behaviour of fullerenes (C
60) in the terrestrial environment: potential release from biosolids-amended soils.
Journal of Hazardous Materials, 262:496-503.
[23] Nel, A., Xia, T., Madler, L., 2006. Toxic potential of materials at the nanolevel.
Science, 311(5761):622-627.
[24] Oberdrster, E., Zhu, S.Q., Blickley, T.M., 2006. Ecotoxicology of carbon-based engineered nanoparticles: effects of fullerene (C
60) on aquatic organisms.
Carbon, 44(6):1112-1120.
[25] Qu, X.L., Hwang, Y.S., Alvarez, P.J., 2010. UV irradiation and humic acid mediate aggregation of aqueous fullerene (nC
60) nanoparticles.
Environmental Science & Technology, 44(20):7821-7826.
[26] Takada, H., Kokubo, K., Matsubayashi, K., 2006. Antioxidant activity of supramolecular water-soluble fullerene evaluated by β-carotene bleachingassay.
Bioscience, Biotechnology, and Biochemistry, 70(12):3088-3093.
[27] Tian, X.L., Zhou, S., He, X., 2010. Metal impurities dominate the sorption of a commercially available carbon nanotube for Pb(II) from water.
Environmental Science & Technology, 44(21):8144-8149.
[28] van Wezel, A.P., Moriniere, V., Emke, E., 2011. Quantifying summed fullerene nC
60 and related transformation products in water using LC LTQ Orbitrap MS and application to environmental samples.
Environment International, 37(6):1063-1067.
[29] Xie, B., Xu, Z.H., Guo, W.H., 2008. Impact of natural organic matter on the physicochemical properties of aqueous C
60 nanoparticles.
Environmental Science & Technology, 42(8):2853-2859.
[30] Yang, Y.K., Nakada, N., Nakajima, R., 2013. pH, ionic strength and dissolved organic matter alter aggregation of fullerene C
60 nanoparticles suspensions in wastewater.
Journal of Hazardous Materials, 244-245:582-587.
[31] Zhang, W., Rattanaudompol, U., Li, H., 2013. Effects of humic and fulvic acids on aggregation of aqu/nC
60 nanoparticles.
Water Research, 47(5):1793-1802.
Open peer comments: Debate/Discuss/Question/Opinion
<1>