Full Text:   <2606>

Summary:  <1791>

CLC number: S181

On-line Access: 2018-02-06

Received: 2017-04-06

Revision Accepted: 2017-06-25

Crosschecked: 2018-01-08

Cited: 0

Clicked: 4482

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Li-xi Jiang

https://orcid.org/0000-0002-8579-0763

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2018 Vol.19 No.2 P.130-146

http://doi.org/10.1631/jzus.B1700191


Role of jasmonic acid in improving tolerance of rapeseed (Brassica napus L.) to Cd toxicity


Author(s):  Essa Ali, Nazim Hussain, Imran Haider Shamsi, Zahra Jabeen, Muzammil Hussain Siddiqui, Li-xi Jiang

Affiliation(s):  Zhejiang Key Laboratory of Crop Gene Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; more

Corresponding email(s):   jianglx@zju.edu.cn

Key Words:  Rapeseed, Cadmium, Jasmonic acid, Antioxidant enzyme, Malondialdehyde, Ultrastructure


Essa Ali, Nazim Hussain, Imran Haider Shamsi, Zahra Jabeen, Muzammil Hussain Siddiqui, Li-xi Jiang. Role of jasmonic acid in improving tolerance of rapeseed (Brassica napus L.) to Cd toxicity[J]. Journal of Zhejiang University Science B, 2018, 19(2): 130-146.

@article{title="Role of jasmonic acid in improving tolerance of rapeseed (Brassica napus L.) to Cd toxicity",
author="Essa Ali, Nazim Hussain, Imran Haider Shamsi, Zahra Jabeen, Muzammil Hussain Siddiqui, Li-xi Jiang",
journal="Journal of Zhejiang University Science B",
volume="19",
number="2",
pages="130-146",
year="2018",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1700191"
}

%0 Journal Article
%T Role of jasmonic acid in improving tolerance of rapeseed (Brassica napus L.) to Cd toxicity
%A Essa Ali
%A Nazim Hussain
%A Imran Haider Shamsi
%A Zahra Jabeen
%A Muzammil Hussain Siddiqui
%A Li-xi Jiang
%J Journal of Zhejiang University SCIENCE B
%V 19
%N 2
%P 130-146
%@ 1673-1581
%D 2018
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1700191

TY - JOUR
T1 - Role of jasmonic acid in improving tolerance of rapeseed (Brassica napus L.) to Cd toxicity
A1 - Essa Ali
A1 - Nazim Hussain
A1 - Imran Haider Shamsi
A1 - Zahra Jabeen
A1 - Muzammil Hussain Siddiqui
A1 - Li-xi Jiang
J0 - Journal of Zhejiang University Science B
VL - 19
IS - 2
SP - 130
EP - 146
%@ 1673-1581
Y1 - 2018
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1700191


Abstract: 
The well-known detrimental effects of cadmium (Cd) on plants are chloroplast destruction, photosynthetic pigment inhibition, imbalance of essential plant nutrients, and membrane damage. jasmonic acid (JA) is an alleviator against different stresses such as salinity and drought. However, the functional attributes of JA in plants such as the interactive effects of JA application and Cd on rapeseed in response to heavy metal stress remain unclear. JA at 50 µmol/L was observed in literature to have senescence effects in plants. In the present study, 25 µmol/L JA is observed to be a “stress ameliorating molecule” by improving the tolerance of rapeseed plants to Cd toxicity. JA reduces the Cd uptake in the leaves, thereby reducing membrane damage and malondialdehyde content and increasing the essential nutrient uptake. Furthermore, JA shields the chloroplast against the damaging effects of Cd, thereby increasing gas exchange and photosynthetic pigments. Moreover, JA modulates the antioxidant enzyme activity to strengthen the internal defense system. Our results demonstrate the function of JA in alleviating Cd toxicity and its underlying mechanism. Moreover, JA attenuates the damage of Cd to plants. This study enriches our knowledge regarding the use of and protection provided by JA in Cd stress.

茉莉酸对油菜(Brassica napus L.)受镉毒害的缓解作用

目的:本研究目的在于了解:(1)喷施外源茉莉酸对受到镉胁迫油菜的作用;(2)是否茉莉酸能够通过增强气体交换,从而保护受到氧化胁迫的地上部分组织的叶绿体,进而通过减少镉的吸收来维持离子平衡;(3)是否通过喷施茉莉酸来对具有减缓镉毒害效应的抗氧化酶的活性进行调节.
创新点:茉莉酸能够调节响应胁迫的抗氧化酶的活性,从而通过保护叶绿体免受活性氧(ROS)伤害而提高光合产物的能力,最大限度地缓解油菜植株受到的镉毒害.
方法:(1)叶片气体交换;(2)叶片光合色素分析;(3)丙二醛与抗氧化酶活性分析;(4)营养成分分析;(5)透射电镜亚细胞水平观察.
结论:茉莉酸对于植物受镉毒害的缓解作用的机理在于减少叶片中镉的积累,从而减轻氧化胁迫过程中产生的ROS对于膜系统的损害程度.

关键词:油菜;镉;茉莉酸;抗氧化酶;丙二醛;超微结构

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Ahmad P, Nabi G, Ashraf M, 2011. Cadmium-induced oxidative damage in mustard [Brassica juncea (L.) Czern. & Coss.] plants can be alleviated by salicylic acid. South Afr J Bot, 77(1):36-44.

[2]Ali E, Maodzeka A, Hussain N, et al., 2015. The alleviation of cadmium toxicity in oilseed rape (Brassica napus) by the application of salicylic acid. Plant Growth Regul, 75(3): 641-655.

[3]Azevedo BM, Bastos FGC, Viana TVA, et al., 2005. Feitos de niveis de irrigacao na cultura da melancia. Rev Cienc Agron, 36:9-15 (in Portuguese).

[4]Borges R, Miguel EC, Dias JMR, et al., 2004. Ultrastructural, physiological and biochemical analyses of chlorate toxicity on rice seedlings. Plant Sci, 166(4):1057-1062.

[5]Cakmak I, Marschner H, 1992. Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves. Plant Physiol, 98(4):1222-1227.

[6]Chen H, Zheng C, Tu C, et al., 1999. Heavy metal pollution in soils in China: status and countermeasures. Ambio, 28(2): 130-134.

[7]Chen J, Yan ZZ, Li XZ, 2014. Effect of methyl jasmonate on cadmium uptake and antioxidative capacity in Kandelia obovata seedlings under cadmium stress. Ecotoxicol Environ Safety, 104:349-356.

[8]Clemens S, 2006. Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie, 88(11):1707-1719.

[9]Creelman RA, Mullet JE, 1995. Jasmonic acid distribution and action in plants: regulation during development and response to biotic and abiotic stress. Proc Natl Acad Sci USA, 92(10):4114-4119.

[10]Creelman RA, Mullet JE, 1997. Biosynthesis and action of jasmonates in plants. Ann Rev Plant Physiol Plant Mol Biol, 48(1):355-381.

[11]Czerpak R, Piotrowska A, Szulecka K, 2006. Jasmonic acid affects changes in the growth and some components content in alga Chlorella vulgaris. Acta Physiol Plant, 28(3):195-203.

[12]Fan SK, Zhu J, Tian WH, et al., 2017. Effects of split applications of nitrogen fertilizers on the Cd level and nutritional quality of Chinese cabbage. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 18(10):897-905.

[13]Garg N, Manchanda G, 2009. ROS generation in plants: boon or bane? Plant Biosyst, 143(1):81-96.

[14]Giannopolitis CN, Ries SK, 1977. Superoxide dismutases. I. Occurrence in higher plants. Plant Physiol, 59(2):309-314.

[15]Guan YZ, Zhao J, Chen SB, 2012. Study on direct sowing cultivation techniques of high-quality, high-yielding and high-resistant rapeseed variety Zheda 619. Acta Agric Jiangxi, 24:26-27.

[16]Hodges DM, DeLong JM, Forney CF, et al., 1999. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta, 207(4):604-611.

[17]Hussain N, Jabeen Z, Li YL, et al., 2013. Detection of tocopherol in oilseed rape (Brassica napus L.) using gas chromatography with flame ionization detector. J Integr Agric, 12(5):803-814.

[18]Hussain N, Li H, Jiang YX, et al., 2014. Response of seed tocopherols in oilseed rape to nitrogen fertilizer sources and application rates. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 15(2):181-193.

[19]Jiao WT, Chen WP, Chang AC, et al., 2012. Environmental risks of trace elements associated with long-term phosphate fertilizers applications: a review. Environ Pollut, 168:44-53.

[20]Kanwar MK, Bhardwaj R, Arora P, et al., 2012. Plant steroid hormones produced under Ni stress are involved in the regulation of metal uptake and oxidative stress in Brassica juncea L. Chemosphere, 86(1):41-49.

[21]Kaya A, Doganlar ZB, 2016. Exogenous jasmonic acid induces stress tolerance in tobacco (Nicotiana tabacum) exposed to imazapic. Ecotoxicol Environ Safety, 124: 470-479.

[22]Keramat B, Kalantari KM, Arvin MJ, 2009. Effects of methyl jasmonate in regulating cadmium induced oxidative stress in soybean plant (Glycine max L.). Afr J Microbiol Res, 31(5):240-244.

[23]Kim HJ, Fonseca JM, Choi JH, et al., 2007. Effect of methyl jasmonate on phenolic compounds and carotenoids of romaine lettuce (Lactuca sativa L.). J Agric Food Chem, 55(25):10366-10372.

[24]Kováčik J, Klejdus B, Hedbavny J, et al., 2011. Significance of phenols in cadmium and nickel uptake. J Plant Physiol, 168(6):576-584.

[25]Larson RA, 1988. The antioxidants of higher plants. Phytochemistry, 27(4):969-978.

[26]López-Millán AF, Sagardoy R, Solanas M, et al., 2009. Cadmium toxicity in tomato (Lycopersicon esculentum) plants grown in hydroponics. Environ Exp Bot, 65(2-3):376-385.

[27]Lux A, Martinka M, Vaculík M, et al., 2011. Root responses to cadmium in the rhizosphere: a review. J Exp Bot, 62(1): 21-37.

[28]Maxwell K, Johnson GN, 2000. Chlorophyll fluorescence— a practical guide. J Exp Bot, 51(345):659-668.

[29]Memelink J, Verpoorte R, Kijne JW, 2001. ORCAnization of jasmonate-responsive gene expression in alkaloid metabolism. Trends Plant Sci, 6(5):212-219.

[30]Meng H, Hua S, Shamsi IH, et al., 2009. Cadmium-induced stress on the seed germination and seedling growth of Brassica napus L., and its alleviation through exogenous plant growth regulators. Plant Growth Regul, 58(1): 47-59.

[31]Metodiev MV, Tsonev TD, Popova LP, 1996. Effect of jasmonic acid on the stomatal and nonstomatal limitation of leaf photosynthesis in barley leaves. J Plant Growth Regul, 15(2):75-80.

[32]Mobin M, Khan NA, 2007. Photosynthetic activity, pigment composition and antioxidative response of two mustard (Brassica juncea) cultivars differing in photosynthetic capacity subjected to cadmium stress. J Plant Physiol, 164(5):601-610.

[33]Nakano Y, Asada K, 1981. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in Spinach chloroplasts. Plant Cell Physiol, 22(5):867-880.

[34]Niu L, Yang F, Xu C, et al., 2013. Status of metal accumulation in farmland soils across China: from distribution to risk assessment. Environ Pollut, 176:55-62.

[35]Perfus-Barbeoch L, Leonhardt N, Vavasseur A, et al., 2002. Heavy metal toxicity: cadmium permeates through calcium channels and disturbs the plant water status. Plant J, 32(4):539-548.

[36]Pinto AP, Mota AM, de Varennes A, et al., 2004. Influence of organic matter on the uptake of cadmium, zinc, copper and iron by sorghum plants. Sci Total Environ, 326(1-3): 239-247.

[37]Piotrowska A, Bajguz A, Godlewska-Żyłkiewicz B, et al., 2009. Jasmonic acid as modulator of lead toxicity in aquatic plant Wolffia arrhiza (Lemnaceae). Environ Exp Bot, 66(3):507-513.

[38]Piotrowska-Niczyporuk A, Bajguz A, Zambrzycka E, et al., 2012. Phytohormones as regulators of heavy metal biosorption and toxicity in green alga Chlorella vulgaris (Chlorophyceae). Plant Physiol Biochem, 52:52-65.

[39]Popova LP, Maslenkova LT, Yordanova RY, et al., 2009. Exogenous treatment with salicylic acid attenuates cadmium toxicity in pea seedlings. Plant Physiol Biochem, 47(3): 224-231.

[40]Ramos I, Esteban E, Lucena JJ, et al., 2002. Cadmium uptake and subcellular distribution in plants of Lactuca sp. Cd– Mn interaction. Plant Sci, 162(5):761-767.

[41]Sandalio LM, Dalurzo HC, Gómez M, et al., 2001. Cadmium-induced changes in the growth and oxidative metabolism of pea plant. J Exp Bot, 52(364):2115-2126.

[42]Satler SO, Thimann KV, 1981. Le jasmonate de methyle: nou-veau et puissant promoteur de la senescence des feuilles. Compt Rend Acad Sci Paris Ser III, 293:735-740 (in French).

[43]Shamsi IH, Wei K, Zhang GP, et al., 2008. Interactive effects of cadmium and aluminum on growth and antioxidative enzymes in soybean. Biol Plant, 52(1):165-169.

[44]Shamsi IH, Jiang LX, Wei K, et al., 2010. Alleviation of cadmium toxicity in soybean by potassium supplementation. J Plant Nut, 33(13):1926-1938.

[45]Sorial ME, El Gamal SM, Gendy AA, 2010. Response of sweet basil to jasmonic acid application in relation to different water supplies. Biosci Res, 7(1):39-47.

[46]Steel RGD, Torrie JH, 1980. Principles and Procedures of Statistics: a Biometrical Approach, 2nd Ed. McGraw-Hill, New York.

[47]Thaler JS, Fidantsef AL, Duffey SS, et al., 1999. Trade-offs in plant defense against pathogens and herbivores: a field demonstration of chemical elicitors of induced resistance. J Chem Ecol, 25(7):1597-1609.

[48]Tsonev TD, Lazova GN, Stoinova ZG, et al., 1998. A possible role for jasmonic acid in adaptation of barley seedlings to salinity stress. J Plant Growth Regul, 17(3):153-159.

[49]Uzunova AN, Popova LP, 2000. Effect of salicylic acid on leaf anatomy and chloroplast ultrastructure of barley plants. Photosynthetica, 38(2):243-250.

[50]Vijaranakul U, Jayaswal RK, Nadakavukaren MJ, 2001. Alteration in chloroplast ultrastructure of suspension cultured Nicotiana tabaccum cells by cadmium. Sci Asia, 27:227-231.

[51]Wang LS, Wang L, Wang L, et al., 2009. Effect of 1-butyl-3-methylimidazolium tetrafluoroborate on the wheat (Triticum aestivum L.) seedlings. Environ Toxicol, 24(3):296-303.

[52]Wu CF, Zhang LM, 2010. Heavy metal concentrations and their possible sources in paddy soils of a modern agricultural zone, southeastern China. Environ Earth Sci, 60(1):45-56.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE