Full Text:   <3342>

Summary:  <2238>

CLC number: X131.2

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2014-07-28

Cited: 5

Clicked: 7373

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2014 Vol.15 No.8 P.643-652

http://doi.org/10.1631/jzus.A1400138


Effects of humic acid and bovine serum albumin on the agglomeration and sedimentation of oxide nanoparticles*


Author(s):  Fan-bao Hu, Yong-feng Lin, Ru Chen, Lei Ding, Wei Jiang

Affiliation(s):  . Environment Research Institute, Shandong University, Jinan 250100, China

Corresponding email(s):   jiangw@sdu.edu.cn

Key Words:  Nanoparticles (NPs), Agglomeration, Sedimentation, Bovine serum albumin (BSA), Humic acid (HA)


Fan-bao Hu, Yong-feng Lin, Ru Chen, Lei Ding, Wei Jiang. Effects of humic acid and bovine serum albumin on the agglomeration and sedimentation of oxide nanoparticles[J]. Journal of Zhejiang University Science A, 2014, 15(8): 643-652.

@article{title="Effects of humic acid and bovine serum albumin on the agglomeration and sedimentation of oxide nanoparticles",
author="Fan-bao Hu, Yong-feng Lin, Ru Chen, Lei Ding, Wei Jiang",
journal="Journal of Zhejiang University Science A",
volume="15",
number="8",
pages="643-652",
year="2014",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1400138"
}

%0 Journal Article
%T Effects of humic acid and bovine serum albumin on the agglomeration and sedimentation of oxide nanoparticles
%A Fan-bao Hu
%A Yong-feng Lin
%A Ru Chen
%A Lei Ding
%A Wei Jiang
%J Journal of Zhejiang University SCIENCE A
%V 15
%N 8
%P 643-652
%@ 1673-565X
%D 2014
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1400138

TY - JOUR
T1 - Effects of humic acid and bovine serum albumin on the agglomeration and sedimentation of oxide nanoparticles
A1 - Fan-bao Hu
A1 - Yong-feng Lin
A1 - Ru Chen
A1 - Lei Ding
A1 - Wei Jiang
J0 - Journal of Zhejiang University Science A
VL - 15
IS - 8
SP - 643
EP - 652
%@ 1673-565X
Y1 - 2014
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1400138


Abstract: 
To better understand the nanoparticle (NP) transport in the environment, the agglomeration and sedimentation of Al2O3, SiO2, and TiO2 NPs were evaluated after being treated with bovine serum albumin (BSA) and a commercial humic acid (HA). The morphology of NP agglomerates was examined through a transmission electron microscope (TEM), and the agglomeration kinetics was evaluated using established time-resolved dynamic light scattering techniques. BSA treatments decreased the hydrodynamic diameters (d H) of the three NPs in both NaCl and CaCl2 electrolytes due to their steric repulsive forces caused by the BSA globular architecture. The treatments using HA induced the smallest d H of NPs in NaCl electrolyte, but the largest d H of NPs was found in CaCl2 electrolyte, because the HA bound to each other via calcium complexation and thereby enhanced the NP agglomeration. The zeta potentials of NPs were not the dominant factor to affect agglomeration. The NP sedimentation kinetics were studied through measuring the suspension optical absorbance. It was shown that the BSA treatments retarded the sedimentation in most situations; however, HA treatments accelerated the sedimentation greatly in CaCl2 electrolyte, which was consistent with the measured changes in the d H values. The smallest d H of HA-treated NPs in NaCl electrolyte did not result in the lowest sedimentation rate, which indicated that the agglomeration size was not the only factor to affect the NP sedimentation.

腐殖酸和牛血清蛋白对氧化物纳米颗粒团聚和沉降行为的影响

研究目的:比较牛血清蛋白和腐殖酸对Al2O3、SiO2和TiO2三种纳米颗粒团聚与沉降行为的影响,并讨论其影响机制。
创新要点:纳米颗粒团聚物直径的增大能引起其沉降速度的加快,但小的水动力学直径并不一定导致低的沉降速度,说明团聚直径不是决定纳米颗粒沉降的唯一因素。
研究方法:通过透射电镜观察纳米颗粒团聚物的形态;采用动态光散射技术研究纳米颗粒的团聚动力学;最后通过测量悬浊液的光学吸收来研究纳米颗粒的沉降动力学。
重要结论:牛血清蛋白处理降低了三种纳米颗粒在NaCl和CaCl2中的水动力学直径,原因是牛血清蛋白的球状结构能够引起颗粒间的空间位阻斥力。腐殖酸处理导致纳米颗粒的水动力学直径在NaCl中最小,而在CaCl2中最大(图4),原因是腐殖酸能通过钙的配位作用彼此连接,从而促进了纳米颗粒的团聚。牛血清蛋白减缓了纳米颗粒的沉降;然而腐殖酸在CaCl2中明显加大了纳米颗粒的沉降速度(图5),与其水动力学直径的增大一致。腐殖酸处理的纳米颗粒在NaCl中水动力学直径最小,但沉降速度却不是最低。
纳米颗粒;团聚;沉降;牛血清蛋白;腐殖酸

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

References

[1] Abel, J.S., Stangle, G.C., Schilling, C.H., 1994. Sedimentation in flocculating colloidal suspensions. Journal of Materials Research, 9(2):451-461. 


[2] Akaighe, N., Depner, S.W., Banerjee, S., 2012. The effects of monovalent and divalent cations on the stability of silver nanoparticles formed from direct reduction of silver ions by Suwannee River humic acid/natural organic matter. Science of the Total Environment, 441:277-289. 


[3] Allouni, Z.E., Cimpan, M.R., Hl, P.J., 2009. Agglomeration and sedimentation of TiO2 nanoparticles in cell culture medium. Colloids and Surfaces B: Biointerfaces, 68(1):83-87. 


[4] Brunner, T.J., Wick, P., Manser, P., 2006.  In vitro cytotoxicity of oxide nanoparticles: comparison to asbestos, silica, and the effect of particle solubility. Environmental Science & Technology, 40(14):4374-4381. 


[5] Buzzaccaro, S., Tripodi, A., Rusconi, R., 2008. Kinetics of sedimentation in colloidal suspensions. Journal of Physics: Condensed Matter, 20(49):494219


[6] Chae, S.R., Xiao, Y., Lin, S., 2012. Effects of humic acid and electrolytes on photocatalytic reactivity and transport of carbon nanoparticle aggregates in water. Water Research, 46(13):4053-4062. 


[7] Chen, K.L., Elimelech, M., 2007. Influence of humic acid on the aggregation kinetics of fullerene (C60) nanoparticles in monovalent and divalent electrolyte solutions. Journal of Colloid and Interface Science, 309(1):126-134. 


[8] Chen, K.L., Mylon, S.E., Elimelech, M., 2006. Aggregation kinetics of alginate-coated hematite nanoparticles in monovalent and divalent electrolytes. Environmental Science & Technology, 40(5):1516-1523. 


[9] Chowdhury, I., Duch, M.C., Gits, C.C., 2012. Impact of synthesis methods on the transport of single walled carbon nanotubes in the aquatic environment. Environmental Science & Technology, 46(21):11752-11760. 


[10] Dominguez-Medina, S., Blankenburg, J., Olson, J., 2013. Adsorption of a protein monolayer via hydrophobic interactions prevents nanoparticle aggregation under harsh environmental conditions. ACS Sustainable Chemistry & Engineering, 1(7):833-842. 


[11] Elimelech, M., Jia, X., Gregory, J., 1998. Particle Deposition & Aggregation: Measurement, Modelling and Simulation.  . Butterworth-Heinemann,Wuborn :

[12] Erhayem, M., Sohn, M., 2014. Effect of humic acid source on humic acid adsorption onto titanium dioxide nanoparticles. Science of the Total Environment, 470-471:92-98. 


[13] Ghosh, S., Mashayekhi, H., Pan, B., 2008. Colloidal behavior of aluminum oxide nanoparticles as affected by pH and natural organic matter. Langmuir, 24(21):12385-12391. 


[14] Ghosh, S., Mashayekhi, H., Bhowmik, P., 2010. Colloidal stability of Al2O3 nanoparticles as affected by coating of structurally different humic acids. Langmuir, 26(2):873-879. 


[15] Hsiao, I.L., Huang, Y.J., 2013. Effects of serum on cytotoxicity of nano- and micro-sized ZnO particles. Journal of Nanoparticle Research, 15(9):1-16. 


[16] Jiang, W., Mashayekhi, H., Xing, B.S., 2009. Bacterial toxicity comparison between nano- and micro-scaled oxide particles. Environmental Pollution, 157(5):1619-1625. 


[17] Kang, S.H., Xing, B.S., 2008. Humic acid fractionation upon sequential adsorption onto goethite. Langmuir, 24(6):2525-2531. 


[18] Keller, A.A., Wang, H.T., Zhou, D.X., 2010. Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices. Environmental Science & Technology, 44(6):1962-1967. 


[19] Limbach, L.K., Li, Y.C., Grass, R.N., 2005. Oxide nanoparticle uptake in human lung fibroblasts: effects of particle size, agglomeration, and diffusion at low concentrations. Environmental Science & Technology, 39(23):9370-9376. 


[20] Malcolm, R.L., MacCarthy, P., 1986. Limitation in the use of commercial humic acid in waters and soil research. Environmental Science & Technology, 20(9):904-911. 


[21] Nel, A., Xia, T., Mdler, L., 2006. Toxic potential of materials at the nanolevel. Science, 311(5761):622-627. 


[22] Petosa, A.R., Jaisi, D.P., Quevedo, I.R., 2010. Aggregation and deposition of engineered nanomaterials in aquatic environments: role of physicochemical interactions. Environmental Science & Technology, 44(17):6532-6549. 


[23] Quik, J.T., Stuart, M.C., Wouterse, M., 2012. Natural colloids are the dominant factor in the sedimentation of nanoparticles. Environmental Toxicology and Chemistry, 31(5):1019-1022. 


[24] Saleh, N.B., Pfefferle, L.D., Elimelech, M., 2010. Influence of biomacromolecules and humic acid on the aggregation kinetics of single-walled carbon nanotubes. Environmental Science & Technology, 44(7):2412-2418. 


[25] Sun, K., Jin, J., Kang, M.J., 2013. Isolation and characterization of different organic matter fractions from a same soil source and their phenanthrene sorption. Environmental Science & Technology, 47(10):5138-5145. 


[26] Whitmer, J.K., Luijten, E., 2011. Sedimentation of aggregating colloids. The Journal of Chemical Physics, 134(3):034510


[27] Xia, T., Kovochich, M., Brant, J., 2006. Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Letters, 6(8):1794-1807. 


[28] Yang, K., Lin, D.H., Xing, B.S., 2009. Interactions of humic acid with nanosized inorganic oxides. Langmuir, 25(6):3571-3576. 



Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE